Document


Title

Forest fire smoke detection based on deep learning approaches and unmanned aerial vehicle images
Document Type: Journal Article
Author(s): Soon-Young Kim; Azamjon Muminov
Publication Year: 2023

Cataloging Information

Keyword(s):
  • decoupled head
  • deep learning
  • forest fire
  • remote sensing
  • smoke detection
  • UAV - unmanned aerial vehicles
  • wildfire smoke
  • YOLOv7
Record Maintained By:
Record Last Modified: October 16, 2023
FRAMES Record Number: 68632

Description

Wildfire poses a significant threat and is considered a severe natural disaster, which endangers forest resources, wildlife, and human livelihoods. In recent times, there has been an increase in the number of wildfire incidents, and both human involvement with nature and the impacts of global warming play major roles in this. The rapid identification of fire starting from early smoke can be crucial in combating this issue, as it allows firefighters to respond quickly to the fire and prevent it from spreading. As a result, we proposed a refined version of the YOLOv7 model for detecting smoke from forest fires. To begin, we compiled a collection of 6500 UAV pictures of smoke from forest fires. To further enhance YOLOv7’s feature extraction capabilities, we incorporated the CBAM attention mechanism. Then, we added an SPPF+ layer to the network’s backbone to better concentrate smaller wildfire smoke regions. Finally, decoupled heads were introduced into the YOLOv7 model to extract useful information from an array of data. A BiFPN was used to accelerate multi-scale feature fusion and acquire more specific features. Learning weights were introduced in the BiFPN so that the network can prioritize the most significantly affecting characteristic mapping of the result characteristics. The testing findings on our forest fire smoke dataset revealed that the proposed approach successfully detected forest fire smoke with an AP50 of 86.4%, 3.9% higher than previous single- and multiple-stage object detectors.

Online Link(s):
Citation:
Kim, Soon-Young; Muminov, Azamjon. 2023. Forest fire smoke detection based on deep learning approaches and unmanned aerial vehicle images. Sensors 23(12):5702.