Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Journal Article
Author(s): M. Pascual; M. Roy; F. Guichard; G. Flierl
Publication Date: 2002

Three different lattice-based models for antagonistic ecological interactions, both nonlinear and stochastic,exhibit similar power-law scalings in the geometry of clusters. Specifically, cluster size distributions andperimeter-area curves follow power-law scalings. In the coexistence regime, these patterns are robust: their exponents, and therefore the associated Korcak exponent characterizing patchiness, depend onlyweakly on the parameters of the systems. These distributions, in particular the values of their exponents,are close to those reported in the literature for systems associated with self-organized criticality (SOC)such as forest-fire models; however, the typical assumptions of SOC need not apply. Our results demonstrate that power-law scalings in cluster size distributions are not restricted to systems for antagonistic interactions in which a clear separation of time-scales holds. The patterns are characteristic of processes of growth and inhibition in space, such as those in predator-prey and disturbance-recovery dynamics. Inversions of these patterns, that is, scalings with a positive slope as described for plankton distributions, would therefore require spatial forcing by environmental variability. © 2002 The Royal Society.

Citation: Pascual, M., M. Roy, F. Guichard, and G. Flierl. 2002. Cluster size distributions: signatures of self-organization in spatial ecologies. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, v. 357, no. 1421, p. 657-666. 10.1098/rstb.2001.0983.

Cataloging Information

Topics:
Regions:
Alaska    California    Eastern    Great Basin    Hawaii    Northern Rockies    Northwest    Rocky Mountain    Southern    Southwest    National
Keywords:
  • disturbance
  • fire management
  • lattice-based models
  • local antagonistic interactions
  • power-law scalings
  • self-organization
  • statistical analysis
Tall Timbers Record Number: 28181Location Status: Not in fileCall Number: AvailableAbstract Status: Okay, Fair use, Reproduced by permission
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 51342

This bibliographic record was either created or modified by Tall Timbers and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of Tall Timbers.