Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Journal Article
Author(s): Jonathan A. O'Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; Mark Torre Jorgenson; Xiaomei Xu
Publication Date: 2011

High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (> 3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.

Online Links
Citation: O'Donnell, Jonathan A.; Harden, Jennifer W.; McGuire, A. David; Kanevskiy, Mikhail Z.; Jorgenson, M. Torre; Xu, Xiaomei. 2011. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Global Change Biology 17(3):1461-1474.

Cataloging Information

Topics:
Regions:
Keywords:
  • black spruce
  • boreal forest
  • boreal forests
  • C - carbon
  • climate change
  • climate change
  • fire management
  • permafrost
  • Picea mariana
  • soil carbon
  • soil management
  • soil nutrients
  • soil temperature
  • tundra
  • wildfire
  • wildfires
Tall Timbers Record Number: 25921Location Status: Not in fileCall Number: Not in FileAbstract Status: Fair use, Okay, Reproduced by permission
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 49510

This bibliographic record was either created or modified by Tall Timbers and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of Tall Timbers.