Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 23 of 23

Xu, You
The spatiotemporal variability of vegetation fires is essential for understanding changes in the climate and ecosystem in mountainous regions. MODIS Collection 6 active fire products indicate that the area burned by vegetation fires declined globally from over 4.27 million km2…
Year: 2022
Type: Document
Source: FRAMES

Sadatrazavi, Motlagh, Noorpoor, Ehsani
Wildfires inflict damage on the ecology, economy and human lives globally, which is why they are studied as natural hazards. Policymakers can use fire prediction models to prioritize forest management and threats. In this study, an artificial neural network model is developed…
Year: 2022
Type: Document
Source: FRAMES

Orland, Kirschbaum, Stanley
Wildfire is a global phenomenon that has dramatic effects on erosion and flood potential. On steep slopes, burned areas are more likely to experience significant overland flow during heavy rainfall leading to post fire debris flows (PFDFs). Previous work establishes methods for…
Year: 2022
Type: Document
Source: FRAMES

Bui, Timmermann, Lee, Maloney, Li, Kim, Shuman, Lee, Wieder
Midlatitude stationary waves are relatively persistent large-scale longitudinal variations in atmospheric circulation. Although recent case studies have suggested a close connection between stationary waves and extreme weather events, little is known about the global-scale…
Year: 2022
Type: Document
Source: FRAMES

Egorova, Pagnini
Several cross-sectional studies recognize that conductive climatic conditions, including grave weather conditions favorable for ignition, larger burned areas, increasing fuel load and longer fire season, can lead to extreme events and enable fires to spread faster. Thus, the…
Year: 2022
Type: Document
Source: FRAMES

Di Giuseppe
In 2021, the availability of a physical model for lightning density prediction at ECMWF led the development of data driven models to identify episodes conducive of fires. The machine-learning classifiers worked remarkably well reaching an overall accuracy up to 78%. Still,…
Year: 2022
Type: Document
Source: FRAMES

Grillakis, Voulgarakis, Rovithakis, Seiradakis, Koutroulis, Field, Kasoar, Papadopoulos, Lazaridis
Wildfire is an integral part of the Earth system, but at the same time it can pose serious threats to human society and to certain types of terrestrial ecosystems. Meteorological conditions are a key driver of wildfire activity and extent, which led to the emergence of the use…
Year: 2022
Type: Document
Source: FRAMES

Liu, Eden, Dieppois, Blackett
In many parts of the world, wildfires have become more frequent and intense in recent decades, raising concerns about the extent to which climate change contributes to the nature of extreme fire weather occurrences. However, studies seeking to attribute fire weather extremes to…
Year: 2022
Type: Document
Source: FRAMES

Justino, Bromwich, Schumacher, Silva, Wang
Based on statistical analyses and Arctic Oscillation (AO) and the Pacific-North American pattern (PNA) induced climate anomalies in the 2001–2020 interval, it has been found that these climate modes drastically influence the fire danger (PFIv2) in differing ways across coastal…
Year: 2022
Type: Document
Source: FRAMES

Sharples
The influence of meteorological conditions on wildfire behaviour and propagation has been recognised through the development of a variety of fire weather indices, which combine information on air temperature, atmospheric moisture and wind, amongst other factors. These indices…
Year: 2022
Type: Document
Source: FRAMES

Shmuel, Heifetz
Wildfires are a major natural hazard that lead to deforestation, carbon emissions, and loss of human and animal lives every year. Effective predictions of wildfire occurrence and burned areas are essential to forest management and firefighting. In this paper we apply various…
Year: 2022
Type: Document
Source: FRAMES

Bourgeau-Chavez, Graham, Vander Bilt, Battaglia
Climate warming and changing fire regimes in the North American boreal zone have the capacity to alter the hydrology and ecology of the landscape with long term consequences to peatland ecosystems and their traditional role as carbon sinks. It is important to understand how…
Year: 2022
Type: Document
Source: FRAMES

Cruz, Alexander, Fernandes
The suggestion has been made within the wildland fire community that the rate of spread in the upper portion of the fire danger spectrum is largely independent of the physical fuel characteristics in certain forest ecosystem types. Our review and analysis of the relevant…
Year: 2022
Type: Document
Source: FRAMES

Nakata, Sano, Mukai, Kokhanovsky
The severity of wildfires is increasing globally. In this study, we used data from the Global Change Observation Mission-Climate/Second-generation Global Imager (GCOM-C/SGLI) to characterize the biomass burning aerosols that are generated by large-scale wildfires. We used data…
Year: 2022
Type: Document
Source: FRAMES

Richter, Bathras, Barbetta Duarte, Gollner
Fires occurring at the wildland-urban interface (WUI) have rapidly increased in frequency and severity over the past few decades. As a result of these extreme fires, multiple communities, including thousands of structures, are destroyed every year. The majority of these losses…
Year: 2022
Type: Document
Source: FRAMES

Jones, Abatzoglou, Veraverbeke, Andela, Lasslop, Forkel, Smith, Burton, Betts, Van der Werf
Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here we review current understanding of the impacts of climate change on fire…
Year: 2022
Type: Document
Source: FRAMES

Wang, Swystun, Flannigan
Great efforts have been made to understand the impacts of a changing climate on fire activity; however, a reliable approach with high prediction confidence has yet to be found. By establishing linkages between the longest duration of fire-conducive weather spell and fire…
Year: 2022
Type: Document
Source: FRAMES

Moody, Gibbs, Krueger, Mallia, Pardyjak, Kochanski, Bailey, Stoll
A microscale wildfire model, QES-Fire, that dynamically couples the fire front to microscale winds was developed using a simplified physics rate of spread (ROS) model, a kinematic plume-rise model and a mass-consistent wind solver. The model is three-dimensional and couples fire…
Year: 2022
Type: Document
Source: FRAMES

Hanes
The Canadian Forest Fire Danger Rating System (CFFDRS) is the cornerstone of contemporary fire management in Canada. Although the System is conceptually robust there are known issues, primarily based on limitations that existed over the last 75 years of its development. One area…
Year: 2022
Type: Document
Source: FRAMES

Fazel-Rastgar, Sivakumar
Wildfire is one of the major novel disturbances to the Arctic forest ecosystem. Relevant Weather and climate regimes are the most important elements affecting fire activity. However, these factors could be considered under changing due to Arctic warming. This paper discusses…
Year: 2022
Type: Document
Source: FRAMES

Cobian-Iñiguez, Richter, Camignani, Liveretou, Xiong, Stephens, Finney, Gollner, Fernandez-Pello
The current study presents a series of experiments investigating the smoldering behavior of woody fuel arrays at various porosities under the influence of wind. Wildland fuels are simulated using wooden cribs burned inside a bench scale wind tunnel. Smoldering behavior was…
Year: 2022
Type: Document
Source: FRAMES

He, Loboda, Chen, French
Wildfire is a dominant disturbance agent in pan-Arctic tundra and can significantly impact terrestrial carbon balance and ecosystem functioning. Interactions between fire and climate change can enhance their impacts on the Arctic. However, the driving mechanisms of tundra fire…
Year: 2022
Type: Document
Source: FRAMES

A 10-year review of accidents and incidents within the USDA Forest Service wildland fire system. This document seeks to describe the wildland fire system and culture within which U.S. Department of Agriculture, Forest Service employees operate. To do so, this review presents a…
Year: 2022
Type: Document
Source: FRAMES