Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 44

Young, Higuera, Abatzoglou, Duffy, Hu
Statistical models using historical observations are a critical tool for anticipating future fire regimes. A key uncertainty with these models is the ability to project outside the range of historical observations, often done when making future projections. Here we investigate…
Year: 2017
Type: Document
Source: FRAMES

Walker, Mack, Johnstone
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide, resulting in a need to identify factors that contribute to an ecosystem's resilience or capacity to recover from disturbance. Forest resilience to disturbance may…
Year: 2017
Type: Document
Source: TTRS

Brenkert-Smith, Meldrum, Champ, Barth
Wildfire and the threat it poses to society represents an example of the complex, dynamic relationship between social and ecological systems. Increasingly, wildfire adaptation is posited as a pathway to shift the approach to fire from a suppression paradigm that seeks to control…
Year: 2017
Type: Document
Source: TTRS

Butler, Marsh, Domitrovich, Helmkamp
Wildland fire fighting is a high-risk occupation requiring considerable physical and psychological demands. Multiple agencies publish fatality summaries for wildland firefighters; however, the reported number and types vary. At least five different surveillance systems capture…
Year: 2017
Type: Document
Source: TTRS

Balch, Bradley, Abatzoglou, Nagy, Fusco, Mahood
The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely…
Year: 2017
Type: Document
Source: TTRS

The following list of fire research topics and questions were generated by the agencies and organizations within AWFCG during 2016 Fall Fire Review and through other solicitations. The topics were initially ranked by the AWFCG Fire Research, Development and Application Committee…
Year: 2017
Type: Document
Source: FRAMES

Landry, Partanen, Matthews
Aerosols emitted by landscape fires affect many climatic processes. Here, we combined an aerosol–climate model and a coupled climate-carbon model to study the carbon cycle and climate effects caused by fire-emitted aerosols (FEA) forcing at the top of the atmosphere and at the…
Year: 2017
Type: Document
Source: FRAMES, TTRS

Wotton, Flannigan, Marshall
Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will…
Year: 2017
Type: Document
Source: FRAMES

Rutherford, Schultz
Under projected patterns of climate change, models predict an increase in wildland fire activity in Alaska, which is likely to strain the capacity of the fire governance system under current arrangements (Melvin et al., 2017; Pastick et al., 2017). The Alaska wildland fire…
Year: 2017
Type: Document
Source: FRAMES

Turetsky, Baltzer, Johnstone, Mack, McCann, Schuur
Northern ecosystem processes play out across scales that are rare elsewhere on contemporary earth: large ranging predator–prey systems are still operational, invasive species are rare, and large-scale natural disturbances occur extensively. Disturbances in the far north affect…
Year: 2017
Type: Document
Source: FRAMES

Chipman, Hu
Amplified Arctic warming may facilitate novel tundra disturbance regimes, as suggested by recent increases in the rate and extent of thermoerosion and fires in some tundra areas. Thermoerosion and wildfire can exacerbate warming by releasing large permafrost carbon stocks, and…
Year: 2017
Type: Document
Source: FRAMES

Kitzberger, Falk, Westerling, Swetnam
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of…
Year: 2017
Type: Document
Source: FRAMES

Jain, Wang, Flannigan
We have constructed a fire weather climatology over North America from 1979 to 2015 using the North American Regional Reanalysis dataset and the Canadian Fire Weather Index (FWI) System. We tested for the presence of trends in potential fire season length, based on a…
Year: 2017
Type: Document
Source: FRAMES

Calef, Varvak, McGuire
In western North America, the carbon-rich boreal forest is experiencing warmer temperatures, drier conditions and larger and more frequent wildfires. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models…
Year: 2017
Type: Document
Source: FRAMES

Melvin, Mack, Jandt
Clearing and forest thinning are increasingly seen as strategies to protect private property and infrastructure from boreal wildfires. Property sited in natural spruce-dominated forests are often considered high risk due to the intensity of fires in this fuel type when it burns…
Year: 2017
Type: Document
Source: FRAMES

Pastick, Duffy, Genet, Rupp, Wylie, Johnson, Jorgenson, Bliss, McGuire, Jafarov, Knight
Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of…
Year: 2017
Type: Document
Source: FRAMES

Genet, Hue, Lyu, McGuire, Zhuang, Clein, D'Amore, Bennett, Breen, Biles, Euskirchen, Johnson, Kurkowski, Schroder, Pastick, Rupp, Wylie, Zhang, Zhou, Zhu
It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e. 1,237,774 km2), are influencing and will influence state-wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and…
Year: 2017
Type: Document
Source: FRAMES

Wilson, McCaffrey, Toman
Throughout the late 19th century and most of the 20th century, risks associated with wildfire were addressed by suppressing fires as quickly as possible. However, by the 1960s, it became clear that fire exclusion policies were having adverse effects on ecological health, as well…
Year: 2017
Type: Document
Source: FRAMES

Pierce, Val Martin, Heald
Emissions of aerosols and gases from fires have been shown to adversely affect US air quality at local to regional scales as well as downwind regions far away from the source. In addition, smoke from fires negatively affects humans, ecosystems, and climate. Recent observations…
Year: 2017
Type: Document
Source: FRAMES

Dannenberg, Wise
Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North…
Year: 2017
Type: Document
Source: FRAMES

The Forest Vegetation Simulator (FVS) is a forest dynamics modeling system with geographic variants covering forested areas of the contiguous United States. As a direct descendant of the Prognosis model of the 1970/80s, FVS has seen continuous development and use for over 40…
Year: 2017
Type: Document
Source: FRAMES

Guyette, Stambaugh, Dey, Muzika
The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical…
Year: 2017
Type: Document
Source: FRAMES

Chen, Birdsey
Fire is a major ecosystem disturbance that profoundly impacts vegetation dynamics, atmospheric trace gases and aerosol composition, climate, and the welfare of wildlife and human society. While climate is generally a critical driving factor shaping the occurrence, size, and…
Year: 2017
Type: Document
Source: FRAMES

Boschetti, Higuera, Young
Projections of future fire activity from statistical models are a powerful tool for anticipating 21st-century fire regimes. In previous work, we developed a set of statistical models that predict the likelihood of fires over 30-yr timescales in Alaskan boreal forest and tundra…
Year: 2017
Type: Document
Source: FRAMES

Heinsch, Andrews, Tirmenstein
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating System (NFDRS) indexes and components as well as primary surface or crown fire behavior characteristics. Computer software has been developed to produce fire characteristics…
Year: 2017
Type: Document
Source: FRAMES