Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 149

Taylor, Alexander
The Canadian Forest Fire Behavior Prediction (FBP) System is a systematic method for assessing wildland fire behavior potential. This field guide provides a simplified version of the system, presented in tabular format. It was prepared to assist field staff in making first…
Year: 2018
Type: Document
Source: FRAMES

Cruz, Alexander, Sullivan
This paper represents our response to the questioning by Mell et al. (2018) of our interpretation (Cruz et al. 2017) of five generalised statements or mantras commonly repeated in the wildland fire behaviour modelling literature. We provide further clarity on key subjects and…
Year: 2018
Type: Document
Source: FRAMES

Kim, Warren, Krantz, King, Jaskot, Preston, George, Hays, Landis, Higuchi, DeMarini, Gilmour
Background: The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. Objectives:…
Year: 2018
Type: Document
Source: FRAMES

Rupp, Bieniek, Ziel, Bhatt
Meeting on Thursday November 29th, 2018 at the Alaska Fire Service on the Alaska Climate Adaption Science Center Wildfire Forecasting. Presenters include: Scott Rupp, Peter Bieniek, Robert (Zeke) Ziel, and Uma Bhatt
Year: 2018
Type: Media
Source: FRAMES

Fill, Crandall
Basic information on past, current and future weather conditions is critical for making decisions in prescribed fire and wildfire operations. It is not surprising that weather is one side of the fire behavior triangle. Weather patterns prior to a fire affect fuel moisture and…
Year: 2018
Type: Document
Source: FRAMES

Thompson, Dunn, Calkin
Year: 2015
Type: Document
Source: TTRS

North, Stephens, Collins, Agee, Aplet, Franklin, Fulé
From the text ... 'Management reform in the United States has failed, not because of policy, but owing to lack of coordinated pressure sufficient to overcome entrenched agency disincentive to working with fire. Responding to established research, official agency policy now…
Year: 2015
Type: Document
Source: TTRS

North, Stephens, Collins, Agee, Aplet, Franklin, Fulé
Year: 2015
Type: Document
Source: TTRS

Liu, Hussaini, Okten
Rothermel's wildland surface fire spread model is widely used in North America. The model outputs depend on a number of input parameters, which can be broadly categorized as fuel model, fuel moisture, terrain, and wind parameters. Due to the inevitable presence of uncertainty in…
Year: 2015
Type: Document
Source: TTRS

Katurji, Nikolic, Zhong, Pratt, Yu, Heilman
We have demonstrated the use of an advanced Gaussian-Process (GP) emulator to estimate wildland fire emissions over a wide range of fuel and atmospheric conditions. The Fire Emission Production Simulator, or FEPS, is used to produce an initial set of emissions data that…
Year: 2015
Type: Document
Source: TTRS

Finney, Cohen, Forthofer, McAllister, Gollner, Gorham, Saito, Akafuah, Adam, English
Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is…
Year: 2015
Type: Document
Source: TTRS

Boer, Price, Bradstock
From the text...'Studies in Australia and the United States show that weather is a stronger determinant of fire severity than is fuel...Fuel treatment whether by managed fires or other means, may be most cost-effective when strategically targeted in close proximity to assets at…
Year: 2015
Type: Document
Source: TTRS

Appenzeller
From the text ... 'The trees of the boreal, after all, are used to fire. The dominant species in Alaska and much of Canada, black spruce, maintains an aerial storehouse of seeds, locked in cones that form a distinctive tuft at the treetop. When a fire singes the cones and melts…
Year: 2015
Type: Document
Source: TTRS

Wang, Thompson, Marshall, Tymstra, Carr, Flannigan
In Canadian forests, the majority of burned area occurs on a small number of days of extreme fire weather. These days lie within the tail end of the distribution of fire weather, and are often the periods when fire suppression capacity is most challenged. We examined the…
Year: 2015
Type: Document
Source: TTRS

Liu, Jimenez, Hussaini, Okten, Goodrick
Rothermel's wildland surface fire model is a popular model used in wildland fire management. The original model has a large number of parameters, making uncertainty quantification challenging. In this paper, we use variance-based global sensitivity analysis to reduce the number…
Year: 2015
Type: Document
Source: FRAMES, TTRS

Smurthwaite
From the text ... 'What does the future of rangelands and wildfire look like? The easy answer to the question is that rangelands will look different in the future and so will wildfire occurrence and behavior.'
Year: 2015
Type: Document
Source: TTRS

Jolly, Bradshaw, Freeborn
Year: 2018
Type: Media
Source: FRAMES

This video details the procedure for sampling fuel loading using the photoload technique. This video is part of the World of Wildland Fire video series.
Year: 2018
Type: Media
Source: FRAMES

Moore, Ziel, Saperstein
Organized by the AWFCG Fire Modeling & Analysis Committee (FMAC), this webinar is meant to help listeners get ready for the upcoming fire season in Alaska. Speakers and topics included: Chris Moore on 2017 Fire Modeling Case Studies (AKA "Have you considered elevation in…
Year: 2018
Type: Media
Source: FRAMES

Lowell, Parrent, Deering, Bihn, Becker
The Community Biomass Handbook. Volume 2: Alaska, Where Woody Biomass Can Work, is a companion volume to the Community Biomass Handbook. Volume 1: Thermal Wood Energy, published in April 2014 (Becker et al. 2014). Why an Alaska volume? The original handbook contains information…
Year: 2015
Type: Document
Source: FRAMES

Schoennagel, Godwin, Miller
The combination of frequent droughts, changing climate conditions, and longer fire seasons along with urban development expansion into wildland areas has resulted in more difficult conditions for managing wildfires. Wildfires are causing more frequent and wider-ranging societal…
Year: 2018
Type: Media
Source: FRAMES

Leverkus, Rey Benayas, Castro, Boucher, Brewer, Collins, Donato, Fraver, Kishchuk, Lee, Lindenmayer, Lingua, Macdonald, Marzano, Rhoades, Royo, Thorn, Wagenbrenner, Waldron, Wohlgemuth, Gustafsson
Wildfires, insect outbreaks, and windstorms are increasingly common forest disturbances. Post-disturbance management often involves salvage logging, i.e., the felling and removal of the affected trees; however, this practice may represent an additional disturbance with effects…
Year: 2018
Type: Document
Source: FRAMES

Fitzgerald, Berger, Leavell, Grand
Discusses the purpose and benefits of salvage cutting. One in a part of a series of fire FAQs that are based on questions Forest & Natural Resource Extension agents and specialists have received from the people they serve.
Year: 2018
Type: Document
Source: FRAMES

Berger, Fitzgerald, Leavell
Discusses the conditions, planning, and circumstances involved in managing naturally ignited wildfire as a strategic choice to achieve forest resource management objectives. One in a series of fire FAQs that are based on questions that Forest & Natural Resource Extension…
Year: 2018
Type: Document
Source: FRAMES

Berger, Grand, Fitzgerald, Leavell
Fire severity is a measure of the effects of fire on the environment—both in damage to vegetation and impacts on the soil. Fire severity is driven by weather conditions, the topography of the landscape, and the fuels that are present. Of these, weather is the overriding factor.
Year: 2018
Type: Document
Source: FRAMES