Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 76 - 100 of 6858

Tinkham, Lad, Smith
Increasing global temperatures and variability in the timing, quantity, and intensity of precipitation and wind have led to longer fire season lengths, greater fuel availability, and more intense and severe wildfires [1]. These broad-scale shifts have increased the emphasis on…
Year: 2023
Type: Document
Source: FRAMES

Lucash, Marshall, Weiss, McNabb, Nicolsky, Flerchinger, Link, Vogel, Scheller, Abramoff, Romanovsky
Boreal ecosystems account for 29% of the world's total forested area and contain more carbon than any other terrestrial biome. Over the past 60 years, Alaska has warmed twice as rapidly as the contiguous U.S. and wildfire activity has increased, including the number of fires,…
Year: 2023
Type: Document
Source: FRAMES

Ronchi, Wahlqvist, Ardinge, Rohaert, Gwynne, Rein, Mitchell, Kalogeropoulos, Kinateder, Bénichou, Kuligowski, Kimball
This paper introduces a protocol for the verification of multi-physics wildfire evacuation models, including a set of tests used to ensure that the conceptual modelling representation of each modelling layer is accurately implemented, as well as the interactions between…
Year: 2023
Type: Document
Source: FRAMES

Elhami-Khorasani, Kinateder, Lemiale, Manzello, Marom, Marquez, Suzuki, Theodori, Wang, Wong
Large outdoor fires such as wildfires, wildland urban interface (WUI) fires, urban fires, and informal settlement fires have received increased attention in recent years. In order to develop effective emergency plans to protect people from threats associated with these events,…
Year: 2023
Type: Document
Source: FRAMES

Hessburg
We have all seen the news - hotter summers, and bigger, badder wildfires. What's going on? How did we get here? Paul tells a fast-paced story of western US forests - unintentionally yet massively changed by a century of management. He relates how these changes, coupled with a…
Year: 2017
Type: Media
Source: FRAMES

Wildfires are increasing in frequency and intensity in part because of changing climate conditions and decades of fire suppression. Though fire is a natural ecological process in many forest ecosystems, extreme wildfires now pose a growing threat to the nation’s natural…
Year: 2023
Type: Document
Source: FRAMES

St. Denis, Short, McConnell, Cook, Mietkiewicz, Buckland, Balch
This paper describes a dataset mined from the public archive (1999–2020) of the US National Incident Management System Incident Status Summary (ICS-209) forms (a total of 187,160 reports for 35,170 incidents, including 34,478 wildland fires). This system captures detailed daily/…
Year: 2023
Type: Document
Source: FRAMES

Giglio, Kendall
The demand for improved information on regional and global fire activity in the context of land use/land cover change, ecosystem disturbance, climate modeling, and natural hazards has increased efforts in recent years to improve earth-observing satellite sensors and associated…
Year: 2001
Type: Document
Source: FRAMES

Park, Takahashi, Li, Takakura, Fujimori, Hasegawa, Ito, Lee, Thiery
Fires and their associated carbon and air pollutant emissions have a broad range of environmental and societal impacts, including negative effects on human health, damage to terrestrial ecosystems, and indirect effects that promote climate change. Previous studies investigated…
Year: 2023
Type: Document
Source: FRAMES

Marshall, Linn, Holmes, Goodrick, Thompson, Hemmati
Many wildfire behaviour modeling studies have focused on fires during extreme conditions, where the dominant processes are resolved and smaller-scale variations have less influence on fire behaviour. As such, wildfire behaviour models typically perform well for these cases.…
Year: 2023
Type: Document
Source: FRAMES

Granda, Leon, Vitoriano, Hearne
Wildfires are recurrent natural events that have been increasing in frequency and severity in recent decades. They threaten human lives and damage ecosystems and infrastructure, leading to high recovery costs. To address the issue of wildfires, several activities must be managed…
Year: 2023
Type: Document
Source: FRAMES

La Puma
Inga La Puma, Fire Scientist & Technical Lead* discusses the nuanced role that LANDFIRE plays as it provides foundational data for multiple tools within the natural resource community. 0:00 Intro 0:58 What's LANDFIRE? 1:29 LANDFIRE Milestones 2:36 Interrelationship between…
Year: 2022
Type: Media
Source: FRAMES

Hood, McKinney, Ott, Hanberry, Jain
Maximizing the effectiveness of fuel treatments at the landscape scale is a key research and management need given the inability to treat all areas at risk from wildfire, and there is a growing body of scientific literature assessing this need. Rocky Mountain Research Station…
Year: 2021
Type: Media
Source: FRAMES

Stevens, Dillon, Manley, Povak, Nepal
Introduction to SCIENCE x Day 4, brief overview by Jens StevensDelivering wildfire risk information targeted to the community level, presented by Greg DillonJuggling risks and tradeoffs toward a more resilient future: the known, unknown, unknowable, and the unpleasant, presented…
Year: 2023
Type: Media
Source: FRAMES

Perez-Ramirez, Graziani, Santoni, Ziegler, Hoffman, Mell, Tihay-Felicelli, Ganteaume
Research applications of three-dimensional, time-dependent, computational fluid dynamics fire behavior models, such as the Wildland Urban Interface Fire Dynamics Simulator (WFDS) [1,2], FIRETEC [3], or FIRESTAR3D [4], are progressively increasing. This is due to advances in…
Year: 2022
Type: Document
Source: FRAMES

Graziani, Meerpoel-Pietri, Tihay-Felicelli, Santoni, Morandini, Perez-Ramirez, Mell
Among the vectors of fire propagation towards buildings in the WUI, ornamental hedges have been identified as one of the main elements [1]. In terms of regulations, there is no global consensus on the distances between ornamental plants and buildings. Consequently, it is…
Year: 2022
Type: Document
Source: FRAMES

Ding, Wang, Fu, Zhang, Wang
Satellite remote sensing plays an important role in wildfire detection. Methods using the brightness and temperature difference of remote sensing images to determine if a wildfire has occurred are one of the main research directions of forest fire monitoring. However, common…
Year: 2023
Type: Document
Source: FRAMES

Fayad, Accary, Sutherland, Meradji, Frangieh, Moinuddin, Morvan, Chatelon, Rossi
Junction fires involve the merging of two linear fire fronts intersecting at a small angle which gives rise to an interaction process with fire-induced convective flows that modify the behavior of both fires and produce very large values of the rate of spread (ROS) of the inner…
Year: 2022
Type: Document
Source: FRAMES

Helal, Anderson, Wei, Thompson
Based on current trends and policies aimed at decarbonizing energy systems, the conversion of biomass to bioenergy has the potential to grow rapidly, but such growth depends on the development of efficient, sustainable, and competitive biomass supply chains. As a result, the…
Year: 2023
Type: Document
Source: FRAMES

Ebel, Shephard, Walvoord, Murphy, Partridge, Perkins
Wildfire is a growing concern as climate shifts. The hydrologic effects of wildfire, which include elevated hazards and changes in water quantity and quality, are increasingly assessed using numerical models. Post-wildfire application of physically based distributed models…
Year: 2023
Type: Document
Source: FRAMES

The SCIENCEx webinar series brings together scientists and land management experts from across U.S. Forest Service research stations and beyond to explore the latest science and best practices for addressing large natural resource challenges across the country. These webinars…
Year: 2023
Type: Media
Source: FRAMES

This IFTDSS (Interagency Fuels Treatment Decision Support System) course is available anytime on the Wildland Fire Learning Portal. You can enroll yourself in this on-demand online course once you enter the Wildland Fire Learning Portal. Select "How to Use IFTDSS for Rx Burn…
Year: 2023
Type: Course
Source: FRAMES

Thoman, Walsh
About this course You will learn from researchers and staff from a variety of disciplines at the University of Alaska Fairbanks’ International Arctic Research Center and its collaborators. An introduction to a variety of areas of expertise, from atmospheric science to…
Year: 2023
Type: Course
Source: FRAMES

Robillard
[from the text] From the early 1990s through 2017, state and federal agencies installed about 15 miles of fuel break that protected the southern border of Alaska’s Kenai National Wildlife Refuge (Refuge) from catastrophic wildfire. It wasn’t easy work. It demanded years of…
Year: 2022
Type: Document
Source: FRAMES

Grabinski
[from the text] June 2022 in Alaska was a remarkable month for wildfire. An incredible 1.84 million acres burned, nearly tying the all-time record for June. Notably, 1.2 million acres burned in southwestern Alaska, more than doubling the area burned in that region since the…
Year: 2022
Type: Document
Source: FRAMES