Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 54

Hessburg
It's no secret that wildfires in the west have been drastically increasing in size and destructive power. But what, if anything, can be done about it? Join world-renown and award-winning USFS research ecologist Dr. Paul Hessburg as he explains how we got here and restores our…
Year: 2017
Type: Media
Source: FRAMES

Hessburg
We have all seen the news - hotter summers, and bigger, badder wildfires. What's going on? How did we get here? Paul tells a fast-paced story of western US forests - unintentionally yet massively changed by a century of management. He relates how these changes, coupled with a…
Year: 2017
Type: Media
Source: FRAMES

Power, Codding, Taylor, Swetnam, Magargal, Bird, O'Connell
The primacy of past human activity in triggering change in earth’s ecosystems remains a contested idea. Treating human-environmental dynamics as a dichotomous phenomenon – turning “on” or “off” at some tipping point in the past – misses the broader, longer-term, and varied role…
Year: 2018
Type: Document
Source: FRAMES

Malevich, Guiterman, Margolis
We developed a new software package, burnr, for fire history analysis and plotting in the R statistical programming environment. It was developed for tree-ring fire-scar analysis, but is broadly applicable to other event analyses (e.g., avalanches, frost rings, or culturally…
Year: 2018
Type: Document
Source: FRAMES

Jolly, Bradshaw, Freeborn
Year: 2018
Type: Media
Source: FRAMES

Young, Higuera, Abatzoglou, Duffy, Hu
Statistical models using historical observations are a critical tool for anticipating future fire regimes. A key uncertainty with these models is the ability to project outside the range of historical observations, often done when making future projections. Here we investigate…
Year: 2017
Type: Document
Source: FRAMES

Walker, Mack, Johnstone
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide, resulting in a need to identify factors that contribute to an ecosystem's resilience or capacity to recover from disturbance. Forest resilience to disturbance may…
Year: 2017
Type: Document
Source: TTRS

Freeman, Kobziar, Rose, Cropper
Prescribed fire is widely accepted as a conservation tool because fire is essential to the maintenance of native biodiversity in many terrestrial communities. Approaches to this land-management technique vary greatly among continents, and sharing knowledge internationally can…
Year: 2017
Type: Document
Source: TTRS

Brenkert-Smith, Meldrum, Champ, Barth
Wildfire and the threat it poses to society represents an example of the complex, dynamic relationship between social and ecological systems. Increasingly, wildfire adaptation is posited as a pathway to shift the approach to fire from a suppression paradigm that seeks to control…
Year: 2017
Type: Document
Source: TTRS

Balch, Bradley, Abatzoglou, Nagy, Fusco, Mahood
The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely…
Year: 2017
Type: Document
Source: TTRS

Wei, Larsen
Boreal forest fire history is typically reconstructed using tree-ring based time since last fire (TSLF) frequency distributions from across the landscape. We employed stochastic landscape fire simulations to assess how large a study area and how many TSLF sample-points are…
Year: 2018
Type: Document
Source: FRAMES

Schoennagel, Godwin, Miller
The combination of frequent droughts, changing climate conditions, and longer fire seasons along with urban development expansion into wildland areas has resulted in more difficult conditions for managing wildfires. Wildfires are causing more frequent and wider-ranging societal…
Year: 2018
Type: Media
Source: FRAMES

Pyne
Fire is special. Even among the ancient elements, fire is different because it alone is a reaction. It synthesizes its surroundings; it takes its character from its context. It varies by place, by culture, and by time. It has no single expression. There is no single way to…
Year: 2018
Type: Document
Source: FRAMES

Fisher, White, Thoman
Alaska experiences extremely variable and increasingly active wildland fire seasons, with 6.6 million acres burned in 2004 and 5.1 million in 2015 respectively. The majority of acres burn in relatively brief periods of extremely warm and dry weather. Our hypothesis is that there…
Year: 2018
Type: Media
Source: FRAMES

Pyne
Given the nature of the deliverables - books, with copyrights - it isn't possible to reproduce the full texts here. Instead, I am including the tables of contents and prologues for the four regions the grant has touched on - oak woodlands, Pacific Northwest, North east, and…
Year: 2018
Type: Document
Source: FRAMES

Pyne
To complement the narrative of recent fire history by writing short regional surveys under the collective title To the Last Smoke. These surveys will be focused on the Pacific Northwest, oak woodlands, and Alaska.
Year: 2018
Type: Project
Source: FRAMES

Hawthorne, Mitchell
In recent years a number of studies have suggested that trends in wildfire can be seen at a regional, national and global scale, and can be explained by interactions with factors such as anthropogenic activity and climate. As future susceptibility to fire is expected to be high…
Year: 2018
Type: Document
Source: FRAMES

Koltz, Burkle, Pressler, Dell, Vidal, Richards, Murphy
Climate change is drastically altering global fire regimes, which may affect the structure and function of insect communities. Insect responses to fire are strongly tied to fire history, plant responses, and changes in species interactions. Many insects already possess adaptive…
Year: 2018
Type: Document
Source: FRAMES

Leys, Marlon, Umbanhower, Vannière
Grasslands are globally extensive; they exist in many different climates, at high and low elevations, on nutrient‐rich and nutrient‐poor soils. Grassland distributions today are closely linked to human activities, herbivores, and fire, but many have been converted to urban areas…
Year: 2018
Type: Document
Source: FRAMES

Fresco
Climate change data - and future projections of related impacts - are crucial to community planners, land managers, and indeed all the people of Alaska. We depend on the landscape and its resources, and that landscape is changing. But raw data, even if freely shared, is only…
Year: 2018
Type: Media
Source: FRAMES

Hanan, Tague, Choate, Liu, Kolden, Adam
Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how watersheds respond to disturbance requires understanding mechanisms that interact over…
Year: 2018
Type: Document
Source: FRAMES

Baker
Historical evidence suggests natural disturbances could allow more forest persistence, than expected from models, over 40 yr of transition to the net‐zero emissions needed to limit warming to <2.0°C (e.g., Paris Agreement). Forests must ultimately equilibrate with committed…
Year: 2018
Type: Document
Source: FRAMES

Singletary, Evans
This agreement is made and entered into by the Department of the Interior, Bureau of Land Management, Joint Fire Science Program (BLM), and the University of Nevada Reno for the purpose of Evaluating the Effectiveness of the Joint Fire Science Program (JFSP) Regional Consortia.
Year: 2018
Type: Project
Source: FRAMES

Falke, Gray
Fire is the dominant ecological disturbance process in boreal forests (coniferous forests consisting mostly of pines, spruces, and larches) and fire frequency, size and severity are increasing in Alaska owing to climate warming. However, interactions among fire, climate,…
Year: 2018
Type: Media
Source: FRAMES