Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 176 - 200 of 2729

Wooster, Roberts, Giglio, Roy, Freeborn, Boschetti, Justice, Ichoku, Schroeder, Davies, Smith, Setzer, Csiszar, Strydom, Frost, Zhang, Xu, de Jong, Johnston, Ellison, Vadrevu, McCarty, Tanpipat, Schmidt, SanMiguel-Ayanz
Highlights: A review of active fire remote sensing using EO satellites is presented. Different approaches for fire detection and characterization are compared and contrasted. Main satellite active fire products and their applications are summarised. Some key research topics for…
Year: 2021
Type: Document
Source: FRAMES

Southwell, Legge, Woinarski, Lindenmayer, Lavery, Wintle
Aims Reconnaissance surveys followed by monitoring are needed to assess the impact and response of biodiversity to wildfire. However, post-wildfire survey and monitoring design are challenging due to the infrequency and unpredictability of wildfire, an urgency to initiate…
Year: 2022
Type: Document
Source: FRAMES

Fire is an international, peer-reviewed, open access journal about the science, policy, and technology of fires and how they interact with communities and the environment, broadly defined, published quarterly online by MDPI. Fire serves as an international forum for diverse…
Type: Website
Source: FRAMES

An interesting collection of reports of large fires in the Tanana Flats in 1941-1942.  Parts of the 1941 fires over-wintered and reappeared in spring 1942—an early record of this phenomenon which sparked a Research Brief in 2020: https://akfireconsortium.files.wordpress.com/2020…
Year: 1941
Type: Document
Source: FRAMES

Robinson
A fascinating compilation of materials on the 421,000-acre Kenai wildfire of the summer of 1947 by Roger Robinson, who at that time led the fledgling territorial Alaskan Fire Control Service as Regional Forester.  His collected materials (in response to a request from the Corps…
Year: 1948
Type: Document
Source: FRAMES

Goolsby
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Theme: Life with Fire: Next Generation IT Fire Modeling Forest Service & Department of the Interior (Wildland Fire Management Research Development & Applications / Office of Wildland Fire) are excited to…
Year: 2021
Type: Media
Source: FRAMES

Mansoor, Farooq, Kachroo, Mahmoud, Fawzy, Popescu, Alyemeni, Sonne, Rinklebe, Ahmad
Forests have been undergoing through immense pressure due to the factors like human activities; procurement of forest products and climate change which is a major factor influencing this pressure buildup on forests. Climate change and temperature increase caused by anthropogenic…
Year: 2022
Type: Document
Source: FRAMES

McCarty, Aalto, Paunu, Arnold, Eckhardt, Klimont, Fain, Evangeliou, Venäläinen, Tchebakova, Parfenova, Kupiainen, Soja, Huang
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing…
Year: 2021
Type: Document
Source: FRAMES

Wang, Baccini, Farina, Randerson, Friedl
Climate change is altering vegetation and disturbance dynamics in boreal ecosystems. However, the aggregate impact of these changes on boreal carbon budgets is not well understood. Here we combined multiple satellite datasets to estimate annual stocks and changes in aboveground…
Year: 2021
Type: Document
Source: FRAMES

Macander, Palm, Frost, Herriges, Nelson, Roland, Russell, Suitor, Bentzen, Joly, Goetz, Hebblewhite
Previous research indicates that the effects of climate warming, including shrub expansion and increased fire frequency may lead to declining lichen abundance in arctic tundra and northern alpine areas. Lichens are important forage for caribou (Rangifer tarandus), whose…
Year: 2020
Type: Document
Source: FRAMES

He, Chen, Jenkins, Loboda
Tundra ecosystems contain some of the largest stores of soil organic carbon among all biomes worldwide. Wildfire, the primary disturbance agent in Arctic tundra, is likely to impact soil properties in ways that enable carbon release and modify ecosystem functioning more broadly…
Year: 2021
Type: Document
Source: FRAMES

Palm
Caribou from studied Canada and Alaska herds avoided burned areas, especially in winter and at larger spatial and temporal scales.
Year: 2020
Type: Media
Source: FRAMES

Langford, Kumar, Hoffman
Wildfires are the dominant disturbance impacting many regions in Alaska and are expected to intensify due to climate change. Accurate tracking and quantification of wildfires are important for climate modeling and ecological studies in this region. Remote sensing platforms (e.g…
Year: 2018
Type: Document
Source: FRAMES

Scholten, Jandt, Miller, Rogers, Veraverbeke
Forest fires are usually viewed within the context of a single fire season, in which weather conditions and fuel supply can combine to create conditions favourable for fire ignition—usually by lightning or human activity—and spread1,2,3. But some fires exhibit ‘overwintering’…
Year: 2021
Type: Document
Source: FRAMES

Holsinger, Parks, Saperstein, Loehman, Whitman, Barnes, Parisien
Fire severity is a key driver shaping the ecological structure and function of North American boreal ecosystems, a biome dominated by large, high-intensity wildfires. Satellite-derived burn severity maps have been an important tool in these remote landscapes for both fire and…
Year: 2022
Type: Document
Source: FRAMES

Grabinski
An intensified pattern of wildfire is emerging in Alaska as rapidly increasing temperatures and longer growing seasons alter the state's environment. Both tundra and Boreal forest regions are seeing larger and more frequent fires. The impacts of these fires are felt across the…
Year: 2021
Type: Media
Source: FRAMES

Achtemeier, Goodrick
Abrupt changes in wind direction and speed caused by thunderstorm-generated gust fronts can, within a few seconds, transform slow-spreading low-intensity flanking fires into high-intensity head fires. Flame heights and spread rates can more than double. Fire mitigation…
Year: 2021
Type: Document
Source: FRAMES

Potter, Conkling
The annual national report of the Forest Health Monitoring (FHM) program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for…
Year: 2021
Type: Document
Source: FRAMES

Sharma, Dhakal
With increasing forest and grassland wildfire trends strongly correlated to anthropogenic climate change, assessing wildfire danger is vital to reduce catastrophic human, economic, and environmental loss. From this viewpoint, the authors discuss various approaches deployed to…
Year: 2021
Type: Document
Source: FRAMES

Lin, Zhang, Huang, Gollner
Background: Wildfires represent a significant threat to peatlands globally, but whether peat fires can be initiated by a lofted firebrand is still unknown.Aims: We investigated the ignition threshold of peat fires by a glowing firebrand through laboratory-scale experiments.…
Year: 2024
Type: Document
Source: FRAMES

A 10-year review of accidents and incidents within the USDA Forest Service wildland fire system. This document seeks to describe the wildland fire system and culture within which U.S. Department of Agriculture, Forest Service employees operate. To do so, this review presents a…
Year: 2022
Type: Document
Source: FRAMES

Ma, Hurtt, Tang, Lamb, Lister, Chini, Dubayah, Armston, Campbell, Duncanson, Healey, O'Neil-Dunne, Ott, Poulter, Shen
Forest carbon is a large and uncertain component of the global carbon cycle. An important source of complexity is the spatial heterogeneity of vegetation vertical structure and extent, which results from variations in climate, soils, and disturbances and influences both…
Year: 2023
Type: Document
Source: FRAMES

Wildland Fire Histomap - Learning from the past, preparing for the future. From the USFS Innovation and Organizational Learning Team, this histomap provides overviews and datasets of wildland fire accidents and incidents.
Year: 2023
Type: Tool
Source: FRAMES

van Wees, Van der Werf, Randerson, Andela, Chen, Morton
Fires, among other forms of natural and anthropogenic disturbance, play a central role in regulating the location, composition and biomass of forests. Understanding the role of fire in global forest loss is crucial in constraining land‐use change emissions and the global carbon…
Year: 2021
Type: Document
Source: FRAMES

O, Hou, Orth
Wildfires can destroy property and vegetation, thereby threatening people’s livelihoods and food security. Soil moisture and biomass are important determinants of wildfire hazard. Corresponding novel satellite-based observations therefore present an opportunity to better…
Year: 2020
Type: Document
Source: FRAMES