Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 267

Jain, Abrahamson, Anderson, Hood, Hanberry, Kilkenny, Ott, Urza, Chambers, Battaglia, Varner, O'Brien
Maximizing the effectiveness of fuel treatments at the landscape scale is a key research and management need given the inability to treat all areas at risk from wildfire, and there is a growing body of scientific literature assessing this need. We synthesized existing scientific…
Year: 2021
Type: Document
Source: FRAMES

Nowell, Steelman
A growing body of work has been focusing on how to govern and manage across jurisdictionally fragmented landscapes in an effort to promote more effective wildfire preparedness and response. We contribute to this worthy goal in the following five ways through the research…
Year: 2021
Type: Document
Source: FRAMES

Dobrowski, Littlefield, Lyons, Hollenberg, Carroll, Parks, Abatzoglou, Hegewisch, Gage
Expanding the global protected area network is critical for addressing biodiversity declines and the climate crisis. However, how climate change will affect ecosystem representation within the protected area network remains unclear. Here we use spatial climate analogs to examine…
Year: 2021
Type: Document
Source: FRAMES

Cruz, Alexander
[From the Introduction] In the October-December 2019 issue of WILDFIRE, we described a recently developed rule of thumb for estimating a wildfire’s forward spread rate when burning conditions are severe, namely when wind speeds are high and fuels are critically dry, and the time…
Year: 2021
Type: Document
Source: FRAMES

Shiraishi, Hirata, Hirano
Recently, the effect of large-scale fires on the global environment has attracted attention. Satellite observation data are used for global estimation of fire CO2 emissions, and available data sources are increasing. Although several CO2 emission inventories have already been…
Year: 2021
Type: Document
Source: FRAMES

Burton, Cawson, Filkov, Penman
Fallen plant material such as leaves, needles and branches form litter beds which strongly influence fire ignition and spread. Traits of the dominant species influence litter flammability directly by determining how individual leaves burn and indirectly through the structure of…
Year: 2021
Type: Document
Source: FRAMES

Belenguer-Plomer, Tanase, Chuvieco, Bovolo
In this paper, we present an in-depth analysis of the use of convolutional neural networks (CNN), a deep learning method widely applied in remote sensing-based studies in recent years, for burned area (BA) mapping combining radar and optical datasets acquired by Sentinel-1 and…
Year: 2021
Type: Document
Source: FRAMES

Leverkus, Thorn, Gustafsson, Noss, Müller, Pausas, Lindenmayer
[from the text] A recent warning to humanity signed by >15 000 scientists identified global environmental threats that require urgent policy response from world leaders (Ripple et al 2017). Here, we document challenges and propose solutions related to ongoing shifts in…
Year: 2021
Type: Document
Source: FRAMES

Yan, Zhu, Wang, Zhang, Luo, Qian, Jiang
This study investigates the impacts of African wildfire aerosols (primary organic carbon, black carbon and sulfate) on the Northern Hemispheric in January. We found that wildfire aerosols emitted from equatorial Africa result in two mid-to-high latitudes atmospheric Rossby wave…
Year: 2021
Type: Document
Source: FRAMES

Son, Kim, Wang, Jeong, Woo, Jeong, Lee, Kim, LaPlante, Kwon
The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In…
Year: 2021
Type: Document
Source: FRAMES

Justino, Bromwich, Wilson, Silva, Avila-Diaz, Fernandez, Rodrigues
Satellite-based hot-spot analysis for the Pan-Arctic, shows that Asia experiences a greater number of fires compared to North America and Europe. While hot spots are prevalent through the year in Asia, Europe (North America) exhibits marked annual (semi-annual) variability. The…
Year: 2021
Type: Document
Source: FRAMES

Yasunari, Nakamura, Kim, Choi, Lee, Tachibana, da Silva
Long-term assessment of severe wildfires and associated air pollution and related climate patterns in and around the Arctic is essential for assessing healthy human life status. To examine the relationships, we analyzed the National Aeronautics and Space Administration (NASA)…
Year: 2021
Type: Document
Source: FRAMES

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Sanderfoot, Bassing, Brusa, Emmet, Swift, Gardner
Climate change is intensifying global wildfire activity, and people and wildlife are increasingly exposed to hazardous air pollution during large-scale smoke events. Although wildfire smoke is considered a growing risk to public health, few studies have investigated the impacts…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service Resource Brief for the Arctic Inventory and Monitory Network which briefly summarizes the status of fire extent and frequency in ARCN parks and highlights the historic fire record (WFMI) & perimeter improvements.  The brief is written for a non-…
Year: 2021
Type: Document
Source: FRAMES

Croft, Wuttig, Mathieson, Montini
The quantity and intensity of wildfires have increased while permafrost in the interior of Alaska has become more vulnerable to thaw with warming climate conditions. The Trans-Alaska Pipeline System (TAPS) transports oil through a 1.2-m-diameter pipeline from Prudhoe Bay to…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service web article summarizes fire effects after the 2018 Andrew Creek fire in the Yukon-Charley Rivers National preserve including permafrost and watershed effects and also taking into account the long-term climate trends in the area.
Year: 2021
Type: Document
Source: FRAMES

Hanes, Wotton, McFayden, Jurko
The Fire Weather Index (FWI) System codes and indices are commonly communicated and interpreted using a classification system (i.e., Low, Moderate, High, Extreme) by fire management agencies. Adjective classes were developed provincially shortly after the FWI System was…
Year: 2021
Type: Document
Source: FRAMES

Walker, Howard, Jean, Johnstone, Roland, Rogers, Schuur, Solvik, Mack
Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future…
Year: 2021
Type: Document
Source: FRAMES

Holzworth, Brundell, McCarthy, Jacobson, Rodger, Anderson
World Wide Lightning Location Network (WWLLN) data on global lightning are used to investigate the increase of total lightning strokes at Arctic latitudes. We use the summertime data from June, July, and August (JJA) which average >200,000 strokes each year above 65°N for the…
Year: 2021
Type: Document
Source: FRAMES

Baltzer, Day, Walker, Greene, Mack, Alexander, Arseneault, Barnes, Bergeron, Boucher, Bourgeau-Chavez, Brown, Carrière, Howard, Gauthier, Parisien, Reid, Rogers, Roland, Sirois, Stehn, Thompson, Turetsky, Veraverbeke, Whitman, Yang, Johnstone
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of…
Year: 2021
Type: Document
Source: FRAMES

Hansen, Fitzsimmons, Olnes, Williams
Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and…
Year: 2021
Type: Document
Source: FRAMES

Arab, Khodaei, Eskandarpour, Thompson, Wei
Wildfires pose a significant challenge to the natural and the built environments, as well as the safety and economic wellbeing of the communities residing in wildfire-prone areas. The electric power grid is specifically among the built environments most affected by, and…
Year: 2021
Type: Document
Source: FRAMES

Ruess, Winton, Adams
Over the past several decades, growth declines and mortality of trembling aspen throughout western Canada and the United States have been linked to drought, often interacting with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline” throughout much of…
Year: 2021
Type: Document
Source: FRAMES

Champ, Barth, Brenkert-Smith, Falk, Gomez, Meldrum
Wildland-urban interface residents, who occupy the areas where wildlands meet and mix with human development, are both contributors to and recipients of the disastrous effects of wildland fires. They contribute through fire starts, flammable homes, unmitigated properties,…
Year: 2021
Type: Document
Source: FRAMES