Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 86

Henderson, Ichoku, Burkholder, Brauer, Jackson
Wildfire emissions are challenging to measure and model, but simple and realistic estimates can benefit multiple disciplines. We evaluate the potential of MODIS (Moderate Resolution Imaging Spectroradiometer) data to address this objective. A total of 11,004 fire pixels detected…
Year: 2010
Type: Document
Source: FRAMES, TTRS

Goldshleger, Ben-Dor, Lugassi, Eshel
Recent developments in the monitoring of soil degradation processes have used passive remote sensing (diffuse reflectance spectroscopy) and active remote-sensing tools such as ground-penetrating radar (GPR) and frequency domain electromagnetic induction (FDEM). We have limited…
Year: 2010
Type: Document
Source: TTRS

Giglio, Randerson, van der Werf, Kasibhatla, Collatz, Morton, Defries
Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5º spatial…
Year: 2010
Type: Document
Source: TTRS

Aplet, Wilmer
From the text ... 'Policymakers and forestry experts recognize that, after a century of fire suppression, there is a crisis in forest health: fire-dependent ecosystems starved of regular fire cycles now have unhealthy fuel loads and experience unnaturally large wildfires.'
Year: 2010
Type: Document
Source: TTRS

Mell, Manzello, Maranghides, Butry, Rehm
Wildfires that spread into wildland-urban interface (WUI) communities present significant challenges on several fronts. In the United States, the WUI accounts for a significant portion of wildland fire suppression and wildland fuel treatment costs. Methods to reduce structure…
Year: 2010
Type: Document
Source: FRAMES, TTRS

Schneider, Fernando
In land change science studies, a cover type is defined by land surface attributes, specifically including the types of vegetation, topography and human structures, which makes it difficult to characterize land cover as discrete classes. One of the challenges in characterizing a…
Year: 2010
Type: Document
Source: TTRS

Goetz, Sun, Baccini, Beck
Fire disturbance at high latitudes modifies a broad range of ecosystem properties and processes, thus it is important to monitor the response of vegetation to fire disturbance. This monitoring effort can be aided by lidar remote sensing, which captures information on vegetation…
Year: 2010
Type: Document
Source: TTRS

Hood
The report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United…
Year: 2010
Type: Document
Source: TTRS

Ottmar, Brown, French, Larkin
This document presents the study plan for the Fire and Smoke Model Evaluation Experiment (FASMEE). FASMEE is a large-scale interagency effort to (1) identify the critical measurements necessary to improve operational wildland fire and smoke prediction systems, (2) collect…
Year: 2017
Type: Document
Source: FRAMES

Watts, Kobziar, Percival
Unmanned aircraft system (UAS) have been developed alongside manned aircraft yet have seen widespread use only in the past decade. Their use for miliraty applications has propelled advances in electronics and sensors to yield systems whose capabilities may be useful for many…
Year: 2010
Type: Document
Source: TTRS

Rueda, Godoy, Hawkins
Aim: Gymnosperms do not follow a latitudinal diversity gradient across the Northern Hemisphere but are influenced by geography at continental scales. Tolerance to physiological aridity is thought to be the main driver of this distribution, yet through evolutionary time conifers…
Year: 2017
Type: Document
Source: TTRS

Strader, Jandt, Jenkins, York, Ziel
Presented by Heidi Strader, Randi Jandt, Jenn Jenkins, Alison York and Robert Ziel. Optional webinar for AFSC remote sensing workshop presenters to introduce the Alaska fire management context. We will summarize the natural history of fire in the state, explain how fire…
Year: 2017
Type: Media
Source: FRAMES

Loehman, Saperstein, Miller, Hrobak, Loboda, Veraverbeke, Hoy
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Jenkins, Butteri, Miller, Slaughter, Ellicott, Heinrichs, Waigl
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Zhao
Wildfire is a major forest disturbance in the forests in northeastern China. Fires in this region have extraordinary environmental and social impacts because it’s location close to densely populated regions in China and other northeastern Asian countries. This study describes…
Year: 2017
Type: Media
Source: FRAMES

Liu
Wildland fire is a natural phenomenon and influential force of the Earth’s climate system. During the past decades, increased large wildland fire activities, longer wildland fire durations, and longer wildfire seasons in the United States have received more and more attention…
Year: 2017
Type: Media
Source: FRAMES

Stevens
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Ziel, Bulock, Wattenbarger, Weddle, Thompson, Bourgeau-Chavez, Leblon
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Loehman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Miller
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Barrett
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Whitman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Veraverbeke
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Loboda
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

van der Sluijs
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES