Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 125

Johnston, Woodward
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Drew, Samuel, Lukiwski, Willman
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Payette, Gagnon
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Van Lear, Waldrop
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Salazar
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Andrews, Burgan
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Brown
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Racine, Dennis, Patterson
The location, cause, frequency, size, rotation times, and seasonal timing of tundra fires in the Noatak River watershed of northwestern Alaska were determined from Bureau of Land Management fire records for 1956-83 and satellite (LANDSAT) 1:1 000 000 scale, black and white, band…
Year: 1985
Type: Document
Source: TTRS

Foster
(1) The pattern of post-fire vegetation development in Picea mariana (black spruce)-Pleurozium forests in south-eastern Labrador, Canada, is evaluated using palaeoecological methods and vegetation analysis of extant stands.(2) Macrofossil analysis of mor humus profiles in mature…
Year: 1985
Type: Document
Source: TTRS

Johansen
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Koonce, Roth
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Reifsnyder, Berry
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Sandberg
[no description entered]
Year: 1985
Type: Document
Source: TTRS

McMahon, Clements, Bush, Neary, Taylor
Demands for firewood are high and rising, and pesticide-treated trees are often an obvious source. Worning intervals/ground fires/Understory vegetation/litter/sampling/age classes/statistical analysis/population ecology/fire suppression © by the Society of American Foresters.…
Year: 1985
Type: Document
Source: TTRS

Van Wagner
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Anderson
The dynamics of the fine forest fuel's response to moisture changes have not been fully recognized. Fire behavior systems now in use consider all fine fuels to have a 1-hour response time. Experimental results of testing a wide range of fine fuels show the change in moisture…
Year: 1985
Type: Document
Source: TTRS

Episode 2 of the Fire Danger Learning Series discussing the forthcoming 2016 revision to the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Lutes
FOFEM - A First Order Fire Effects Model - is a computer program that was developed to meet needs of resource managers, planners, and analysts in predicting and planning for fire effects. Quantitative predictions of fire effects are needed for planning prescribed fires that best…
Year: 2016
Type: Document
Source: FRAMES

Bushey
Rate of fire spread and flame length were observed on six prescribed headfires in the sagebrush (Artemisia)/bunchgrass vegetation type in western North America. Spread rate and flame length predictions from the fire behavior prediction system BEHAVE reasonably matched mean…
Year: 1985
Type: Document
Source: TTRS

Pimont, Parsons, Rigolot, deColigny, Dupuy, Dreyfus, Linn
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose. We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a…
Year: 2016
Type: Document
Source: TTRS

Fischer, Spies, Steelman, Moseley, Johnson, Bailey, Ager, Bourgeron, Charnley, Collins, Kline, Leahy, Littell, Millington, Nielsen-Pincus, Olsen, Paveglio, Roos, Steen-Adams, Stevens, Vukomanovic, White, Bowman
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological 'pathology': that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales.…
Year: 2016
Type: Document
Source: TTRS

Drury, Rauscher, Banwell, Huang, Lavezzo
The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based software and data integration framework that organizes fire and fuels software applications into a single online application. IFTDSS is designed to make fuels treatment planning and analysis more…
Year: 2016
Type: Document
Source: TTRS

Balch, Nagy, Archibald, Bowman, Moritz, Roos, Scott, Williamson
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to…
Year: 2016
Type: Document
Source: TTRS

Steelman
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance…
Year: 2016
Type: Document
Source: TTRS

Waring, Coops
A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial…
Year: 2016
Type: Document
Source: TTRS