Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 143

Shanks Rodrigues
Wildland firefighting in Alaska is changing due to the impact of climate change on the boreal forest. Changes to the wildland firefighting regime could have significant impacts on community participation during fall subsistence hunting and, consequentially, food security levels…
Year: 2018
Type: Document
Source: FRAMES

Langford, Kumar, Hoffman
Wildfires are the dominant disturbance impacting many regions in Alaska and are expected to intensify due to climate change. Accurate tracking and quantification of wildfires are important for climate modeling and ecological studies in this region. Remote sensing platforms (e.g…
Year: 2018
Type: Document
Source: FRAMES

Rupp, Bieniek, Ziel, Bhatt
Meeting on Thursday November 29th, 2018 at the Alaska Fire Service on the Alaska Climate Adaption Science Center Wildfire Forecasting. Presenters include: Scott Rupp, Peter Bieniek, Robert (Zeke) Ziel, and Uma Bhatt
Year: 2018
Type: Media
Source: FRAMES

Lin, McCarty, Wang, Rogers, Morton, Collatz, Jin, Randerson
Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual…
Year: 2014
Type: Document
Source: TTRS

Burton, Betts, Jones, Williams
The commitment to limit warming to 1.5 °C as set out in the Paris Agreement is widely regarded as ambitious and challenging. It has been proposed that reaching this target may require a number of actions, which could include some form of carbon removal or Solar Radiation…
Year: 2018
Type: Document
Source: FRAMES

Barbero, Abatzoglou, Steel, Larkin
Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US…
Year: 2014
Type: Document
Source: FRAMES, TTRS

Romps, Seeley, Vollaro, Molinari
Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (…
Year: 2014
Type: Document
Source: FRAMES, TTRS

Koch, Kikuchi, Wickland, Schuster
Boreal soils in permafrost regions contain vast quantities of frozen organic material that is released to terrestrial and aquatic environments via subsurface flow paths as permafrost thaws. Longer flow paths may allow chemical reduction of solutes, nutrients, and contaminants,…
Year: 2014
Type: Document
Source: TTRS

Stephens, Burrows, Buyantuyev, Gray, Keane, Kubian, Liu, Seijo, Shu, Tolhurst, van Wagtendonk
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors -- climate change, fire exclusion, and antecedent disturbance, collectively referred to as the 'mega-fire triangle' -- likely…
Year: 2014
Type: Document
Source: TTRS

Spellman, Mulder, Hollingsworth
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may…
Year: 2014
Type: Document
Source: TTRS

Shulski, You, Krieger, Baule, Zhang, Zhang, Horowitz
Meteorological observations from more than 250 stations in the Beaufort and Chukchi Sea coastal, interior, and offshore regions were gathered and quality-controlled for the period 1979 through 2009. These stations represent many different observing networks that operate in the…
Year: 2014
Type: Document
Source: TTRS

Rocca, Miniat, Mitchell
From the text ... 'Because temperature is forecast to increase almost everywhere, all the regions except the mid-Atlantic region project increases in wildfire activity, despite the variability in precipitation forecasts. The magnitude and impact of future wildfire activity will…
Year: 2014
Type: Document
Source: TTRS

Bengston, Peck, Olson, Barros, Birdsey, Williams, Leyva Reyes, Zamudio-Sanchez
North American forests and forest management institutions are experiencing a wide range of significant ecological disturbances and socioeconomic changes, which point to the need for enhanced resilience. A critical capacity for resilience in institutions is strategic foresight.…
Year: 2018
Type: Document
Source: FRAMES

Krause, Kloster, Wilkenskjeld, Paeth
In this study, components of the Max Planck Institute Earth System Model were used to explore how changes in lightning induced by climate change alter wildfire activity. To investigate how climate change alters global flash frequency, simulations with the atmospheric general…
Year: 2014
Type: Document
Source: FRAMES

Arora, Melton
The terrestrial biosphere currently absorbs about 30% of anthropogenic CO2 emissions. This carbon uptake over land results primarily from vegetation’s response to increasing atmospheric CO2 but other factors also play a role. Here we show that since the 1930s increasing…
Year: 2018
Type: Document
Source: FRAMES

Robinne, Bladon, Miller, Parisien, Mathieu, Flannigan
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities…
Year: 2018
Type: Document
Source: TTRS

Schoennagel, Godwin, Miller
The combination of frequent droughts, changing climate conditions, and longer fire seasons along with urban development expansion into wildland areas has resulted in more difficult conditions for managing wildfires. Wildfires are causing more frequent and wider-ranging societal…
Year: 2018
Type: Media
Source: FRAMES

Fisher, White, Thoman
Alaska experiences extremely variable and increasingly active wildland fire seasons, with 6.6 million acres burned in 2004 and 5.1 million in 2015 respectively. The majority of acres burn in relatively brief periods of extremely warm and dry weather. Our hypothesis is that there…
Year: 2018
Type: Media
Source: FRAMES

Lasslop, Moeller, D'Onofrio, Hantson, Kloster
The interactions between climate, vegetation and fire can strongly influence the future trajectories of vegetation in Earth system models. We evaluate the relationships between tropical climate, vegetation and fire in the global vegetation model JSBACH, using a simple fire…
Year: 2018
Type: Document
Source: FRAMES

The fires that ravaged Yellowstone National Park in 1988 were large and severe, but they were still within the normal limits of fire regimes in the West. Following those fires 30 years ago, University of Wisconsin–Madison Professor of Integrative Biology, Monica Turner,…
Year: 2018
Type: Media
Source: FRAMES

In 2017, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide— reached new record highs. The annual global average carbon dioxide concentration at Earth’s surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and…
Year: 2018
Type: Document
Source: FRAMES

York, Bhatt, Thoman, Ziel
Despite the low temperatures and short growing seasons of northern ecosystems, wildland fire is the dominant ecological disturbance in the boreal forest, the world’s largest terrestrial biome. Wildland fire also affects adjacent tundra regions. This sidebar, with a focus on the…
Year: 2018
Type: Document
Source: FRAMES

Hawthorne, Mitchell
In recent years a number of studies have suggested that trends in wildfire can be seen at a regional, national and global scale, and can be explained by interactions with factors such as anthropogenic activity and climate. As future susceptibility to fire is expected to be high…
Year: 2018
Type: Document
Source: FRAMES

Jorgenson, Jorgenson, Boldenow, Orndahl
Rapid warming has occurred over the past 50 years in Arctic Alaska, where temperature strongly affects ecological patterns and processes. To document landscape change over a half century in the Arctic National Wildlife Refuge, Alaska, we visually interpreted geomorphic and…
Year: 2018
Type: Document
Source: FRAMES