Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 77

Vaillant
This seminar is part of the USFS Missoula Fire Lab Seminar Series. The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based application designed to make fuels treatment planning and analysis more efficient and effective. IFTDSS provides access to data and…
Year: 2020
Type: Media
Source: FRAMES

Potter
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Some fires are big, but others are reach totally stunningly sizes, really “wow, that’s big.” What drives those fires to become so large, while other fires in seemingly similar conditions do not? I will present…
Year: 2020
Type: Media
Source: FRAMES

Poujol, Prein, Newman
Convective storms produce heavier downpours and become more intense with climate change. Such changes could be even amplified in high-latitudes since the Arctic is warming faster than any other region in the world and subsequently moistening. However, little attention has been…
Year: 2020
Type: Document
Source: FRAMES

Bendick, Hoylman
A topological data analysis (TDA) of 200,000 U.S. wildfires larger than 5 acres indicates that events with the largest final burned areas are associated with systematically low fuel moistures, low precipitation, and high vapor pressure deficits in the 30 days prior to the fire…
Year: 2020
Type: Document
Source: FRAMES

Vitolo, Di Giuseppe, Barnard, SanMiguel-Ayanz, Libertà, Krzeminski
Forest fires are an integral part of the natural Earth system dynamics, however they are becoming more devastating and less predictable as anthropogenic climate change exacerbates their impacts. In order to advance fire science, fire danger reanalysis products can be used as…
Year: 2020
Type: Document
Source: FRAMES

Walker, Rogers, Veraverbeke, Johnstone, Baltzer, Barrett, Bourgeau-Chavez, Day, de Groot, Dieleman, Goetz, Hoy, Jenkins, Kane, Parisien, Potter, Schuur, Turetsky, Whitman, Mack
Carbon (C) emissions from wildfires are a key terrestrial–atmosphere interaction that influences global atmospheric composition and climate. Positive feedbacks between climate warming and boreal wildfires are predicted based on top-down controls of fire weather and climate, but…
Year: 2020
Type: Document
Source: FRAMES

Horel, Crosman, Kochanski, Ziel
This study evaluated the ability of the High Resolution Rapid Refresh (HRRR) modeling system to forecast the characteristics of mesoscale atmospheric boundaries arising from thunderstorm outflows, gust fronts, and downburst winds (referred collectively as convective outflows)…
Year: 2020
Type: Document
Source: FRAMES

Anderson
This webinar to the NWCG Smoke Committee describes experimental tools developed for smoke management including higher resolution 7-day forecasts. Presented by Bret Anderson, who works for the National USDA Forest Service Air program and develops tools for wildfire smoke…
Year: 2020
Type: Media
Source: FRAMES

Kelly, Giljohann, Duane, Aquilué, Archibald, Batllori, Bennett, Buckland, Canelles, Clarke, Fortin, Hermoso, Herrando, Keane, Lake, McCarthy, Morán-Ordoñez, Parr, Pausas, Penman, Regos, Rumpff, Santos, Smith, Syphard, Tingley, Brotons
Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening…
Year: 2020
Type: Document
Source: FRAMES

Lindley, Ziel, Teske, Jolly, Law
The Fire Environment Continuing Education SubCommittee presents the 2020 Fall Fire Environment Post Season Lessons Learned Webinar Topics will include: Satellite-derived data WildfireSAFE Tips for Remote fire analysis assignments
Year: 2020
Type: Media
Source: FRAMES

Dube
Literature shows that at a global scale, fire activity increased from the Last Glacial Maximum to the present. There is incremental evidence indicating that climate defines the regional boundary conditions for fire. Human influence on ignitions depends on climate and has, since…
Year: 2009
Type: Document
Source: TTRS

Le Goff, Flannigan, Bergeron
The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973-2002) link between weather conditions and fire…
Year: 2009
Type: Document
Source: TTRS

Klenner, Walton
We used the TELSA forest landscape model to examine the long-term consequences of applying different forest management scenarios on indicators of wildlife habitat, understory productivity, crown fuel hazard, timber yield and treatment costs. The study area was a dry forest…
Year: 2009
Type: Document
Source: TTRS

Anderson, Englefield, Little, Reuter
This paper presents an operational approach to predicting fire growth for wildland fires in Canada. The approach addresses data assimilation to provide predictions in a timely and efficient manner. Fuels and elevation grids, forecast weather, and active fire locations are…
Year: 2009
Type: Document
Source: TTRS

Wotton
Understanding and being able to predict forest fire occurrence, fire growth and fire intensity are important aspects of forest fire management. In Canada fire management agencies use the Canadian Forest Fire Danger Rating System (CFFDRS) to help predict these elements of forest…
Year: 2009
Type: Document
Source: TTRS

Sullivan
In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across landscape. The present series of articles endeavours to comprehensively survey and précis all types of surface fire…
Year: 2009
Type: Document
Source: TTRS

Sullivan
In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across the landscape. The present series of articles endeavours to comprehensively survey and précis all types of surface…
Year: 2009
Type: Document
Source: TTRS

Sullivan
In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across landscape. The present series of articles endeavours to comprehensively survey and précis all types of surface fire…
Year: 2009
Type: Document
Source: TTRS

Podur, Martell
Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land…
Year: 2009
Type: Document
Source: TTRS

Perera, Dalziel, Buse, Routledge
Knowledge of postfire residuals in boreal forest landscapes is increasingly important for ecological applications and forest management. While many studies provide useful insight, knowledge of stand-scale postfire residual occurrence and variability remains fragmented and…
Year: 2009
Type: Document
Source: TTRS

Abt, Prestemon, Gebert
The US Forest Service and other land-management agencies seek better tools for anticipating future expenditures for wildfire suppression. We developed regression models for forecasting US Forest Service suppression spending at 1-, 2-, and 3-year lead times. We compared these…
Year: 2009
Type: Document
Source: TTRS

Potter, Butler
From the text ... 'This resolution of wind information can be useful to fire models simulating fire growth in very specific locations, such as individual drainages or ridges.'
Year: 2009
Type: Document
Source: TTRS

Krawchuk, Cumming, Flannigan
Forecasting future fire activity as a function of climate change is a step towards understanding the future state of the western mixedwood boreal ecosystem. We developed five annual weather indices based on the Daily Severity Rating (DSR) of the Canadian Forest Fire Weather…
Year: 2009
Type: Document
Source: TTRS

Sun, Krueger, Jenkins, Zulauf, Charney
The major source of uncertainty in wildfire behavior prediction is the transient behavior of wildfire due to changes in flow in the fire's environment. The changes in flow are dominated by two factors. The first is the interaction or 'coupling' between the fire and the fire-…
Year: 2009
Type: Document
Source: TTRS

A tool that is part of the Global Wildfire Information System (GWIS) providing fire danger forecast up to 10 days in advance, 1-day lightning forecast and near-real time information on active fires, burnt areas and emissions worldwide.
Year: 2020
Type: Tool
Source: FRAMES