Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 76 - 100 of 5366

Holland, Steyn
The radiant energy income of a slope influences its ambient temperatures and water movements, both of which are important controls on the growth behaviour, species composition and structure of its vegetation cover. Therefore, information about the radiation environments of…
Year: 1975
Type: Document
Source: FRAMES

Gao, Schwilk
In ecosystems where trees and grasses coexist, some grass species are found only in open habitats and others persist under trees. The persistence of shade intolerant grasses in ecosystems such as open woodlands and savannas depends on recurrent fires to open the tree canopy.…
Year: 2022
Type: Document
Source: FRAMES

Ascoli, Moris, Sil, Fernandes
Rothermel-based decision support systems are widespread for fire behavior prediction and wildfire risk analysis. The majority of these systems simulate the rate of spread (Ros) of a surface fire, and linked models (e.g., MTT), using as the input a set of Standard Fuel Model (SFM…
Year: 2022
Type: Document
Source: FRAMES

Buma
Temperatures in high-latitude environments are rising quickly, leading to increases in the frequency and intensity of wildfires. This trend is especially important in the boreal where fire return intervals have shrunk from between 100-300 years to often less than 20 years.…
Year: 2022
Type: Document
Source: FRAMES

Shinneman, Strand, Pellant, Abatzoglou, Brunson, Glenn, Heinrichs, Sadegh, Vaillant
Sagebrush ecosystems in the United States have been declining since EuroAmerican settlement, largely due to agricultural and urban development, invasive species, and altered fire regimes, resulting in loss of biodiversity and wildlife habitat. To combat continued conversion to…
Year: 2023
Type: Document
Source: FRAMES

Johnson, Kennedy, Harrison, Alvarado, Desautel, Holford, Logue
Salvage logging is a controversial tool for post-wildfire management that removes fire-killed trees. We use a generalized randomized experimental design to fulfill two main objectives: (1) quantify the immediate (1-year post-harvest) effects of salvage logging on stand structure…
Year: 2023
Type: Document
Source: FRAMES

Xu, Lovreglio, Kuligowski, Cova, Nilsson, Zhao
To develop effective wildfire evacuation plans, it is crucial to study evacuation decision-making and identify the factors affecting individuals’ choices. Statistic models (e.g., logistic regression) are widely used in the literature to predict household evacuation decisions,…
Year: 2023
Type: Document
Source: FRAMES

Chatzopoulos-Vouzoglanis, Reinke, Soto-Berelov, Jones
Geostationary and polar-orbiting remote sensors have different opportunities to observe wildfires. While polar-orbiting sensors have been favoured in wildfire observations, geostationary sensors offer a higher observation frequency. Here, we assess the utility of the Himawari-8…
Year: 2023
Type: Document
Source: FRAMES

Ghodrat, Shakeriaski, Fanaee, Simeoni
Wildfires are complex phenomena, both in time and space, in ecosystems. The ability to understand wildfire dynamics and to predict the behaviour of the propagating fire is essential and at the same time a challenging practice. A common approach to investigate and predict such…
Year: 2023
Type: Document
Source: FRAMES

Khan
Wildfires kill and injure people, destroy residences, pollute the air, and cause economic loss. In this paper, a low-power Internet of Things (IoT)-based sensor network is developed, which automatically detects fires in forests and sends the location to a central monitoring…
Year: 2023
Type: Document
Source: FRAMES

Suzuki, Manzello
Background: In wildland-urban interface (WUI) fires, particulates from the combustion of both natural vegetative fuels and engineered cellulosic fuels may have deleterious effects on the environment. Aims: The research was conducted to investigate the morphology of the…
Year: 2023
Type: Document
Source: FRAMES

Charnley, Adams
Both the US Forest Service Wildfire Crisis Strategy and the Bipartisan Infrastructure Law that is funding the agency’s initial investments to reduce wildfire risk under the Strategy call for considering equity and environmental justice when implementing projects. During this…
Year: 2022
Type: Media
Source: FRAMES

Calkin, O'Connor
Over the last 5 years, researchers at the US Forest Service’s Rocky Mountain Research Station have worked with land managers to develop collaborative pre-season wildfire response and fuel management plans using the Potential Operational Delineations (PODs) process. Concurrently…
Year: 2022
Type: Document
Source: FRAMES

Hood, Varner, Jain, Kane
Background: Wildland fires are fundamentally landscape phenomena, making it imperative to evaluate wildland fire strategic goals and fuel treatment effectiveness at large spatial and temporal scales. Outside of simulation models, there is limited information on how stand-level…
Year: 2022
Type: Document
Source: FRAMES

Shi, Touge
Most of studies on change-point at a regional or global scale have only examined a single hydrometeorological variable and have been unable to identify any underlying explanations. In this study, we identified change-points and long-term trends of six wildfire-related variables…
Year: 2023
Type: Document
Source: FRAMES

Makowski
In order to formulate effective fire-mitigation policies, it is important to understand the spatial and temporal distribution of different types of wildfires and to be able to predict their occurrence taking the main influencing factors into account. The objective of this short…
Year: 2023
Type: Document
Source: FRAMES

Crowley, Stockdale, Johnston, Wulder, Liu, McCarty, Rieb, Cardille, White
Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for identifying and synthesizing…
Year: 2023
Type: Document
Source: FRAMES

Bastit, Brunette, Montagné-Huck
Natural disturbances are paramount in the development of ecosystems but may jeopardise the provision of forest ecosystem services. Climate change exacerbates this threat and favours interactions between disturbances. Our objective was thus to capture this dimension of multiple…
Year: 2023
Type: Document
Source: FRAMES

Since 1998, the Joint Fire Science Program (JFSP) has provided funding and science delivery for scientific studies associated with managing wildland fire, fuels, and fire-impacted ecosystems to respond to emerging needs of managers, practitioners, and policymakers from local to…
Year: 2022
Type: Document
Source: FRAMES

Engström, Abbaszadeh, Keellings, Deb, Moradkhani
This study seeks to use machine learning to investigate the role of meteorological and climate variables on wildfire occurrence in the Arctic and the global tropical forests biomes. Using monthly fire counts observed by the MODIS satellites in combination with temperature and…
Year: 2022
Type: Document
Source: FRAMES

Watts, Samburova, Moosmüller
Studies of the emissions from wildland fires are important for understanding the role of these events in the production, transport, and fate of emitted gases and particulate matter, and, consequently, their impact on atmospheric and ecological processes, and on human health and…
Year: 2020
Type: Document
Source: FRAMES

Badola, Panda, Roberts, Waigl, Jandt, Bhatt
Detailed vegetation maps are one of the primary inputs for forest and wildfire management. Hyperspectral remote sensing is a proven technique for detailed and accurate vegetation mapping. However, the availability of recent hyperspectral imagery in Alaska is limited because of…
Year: 2022
Type: Document
Source: FRAMES

Cruz, Alexander
[From the Introduction] In the October-December 2019 issue of WILDFIRE, we described a recently developed rule of thumb for estimating a wildfire’s forward spread rate when burning conditions are severe, namely when wind speeds are high and fuels are critically dry, and the time…
Year: 2021
Type: Document
Source: FRAMES

Elhami-Khorasani
Destructive wildfires are now a real threat in regions across the country and beyond what was once considered as the fire season, examples of which are the 2016 Gatlinburg Fire in the Southeast and the 2021 Marshall Fire in late December. Existing wildfire risk assessment…
Year: 2022
Type: Media
Source: FRAMES

Alexander, Cruz
In 2019 we described the development of a rule of thumb for estimating a wildfire’s forward rate of spread in cases when burning conditions are severe (i.e., namely when wind speeds are high and fuels are critically dry) and the time available to prepare a more exacting…
Year: 2021
Type: Media
Source: FRAMES