Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 129

Payette, Filion, Gauthier, Boutin
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Payette, Gagnon
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Ross, Fox, Dietrich, Childs, Marlatt
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Butts
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Racine, Dennis, Patterson
The location, cause, frequency, size, rotation times, and seasonal timing of tundra fires in the Noatak River watershed of northwestern Alaska were determined from Bureau of Land Management fire records for 1956-83 and satellite (LANDSAT) 1:1 000 000 scale, black and white, band…
Year: 1985
Type: Document
Source: TTRS

Foster
(1) The pattern of post-fire vegetation development in Picea mariana (black spruce)-Pleurozium forests in south-eastern Labrador, Canada, is evaluated using palaeoecological methods and vegetation analysis of extant stands.(2) Macrofossil analysis of mor humus profiles in mature…
Year: 1985
Type: Document
Source: TTRS

Paul, Pierovich
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Reifsnyder, Berry
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Heddinghaus
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Street
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Saveland
[no description entered]
Year: 1985
Type: Document
Source: TTRS

Smith, Sparks, Kolden, Abatzoglou, Talhelm, Johnson, Boschetti, Lutz, Apostol, Yedinak, Tinkham, Kremens
Most landscape-scale fire severity research relies on correlations between field measures of fire effects and relatively simple spectral reflectance indices that are not direct measures of heat output or changes in plant physiology. Although many authors have highlighted…
Year: 2016
Type: Document
Source: TTRS

Smith, Kolden, Paveglio, Cochrane, Bowman, Moritz, Kliskey, Alessa, Hudak, Hoffman, Lutz, Queen, Goetz, Higuera, Boschetti, Flannigan, Yedinak, Watts, Strand, van Wagtendonk, Anderson, Stocks, Abatzoglou
Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process.…
Year: 2016
Type: Document
Source: TTRS

Shakesby, Moody, Martin, Robichaud
Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and…
Year: 2016
Type: Document
Source: TTRS

Lebrun, Thogmartin, Thompson, Dijak, Millspaugh
Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced…
Year: 2016
Type: Document
Source: TTRS

French, Whitley, Jenkins
The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012…
Year: 2016
Type: Document
Source: TTRS

Franklin, Serra-Diaz, Syphard, Regan
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the…
Year: 2016
Type: Document
Source: TTRS

Fischer, Spies, Steelman, Moseley, Johnson, Bailey, Ager, Bourgeron, Charnley, Collins, Kline, Leahy, Littell, Millington, Nielsen-Pincus, Olsen, Paveglio, Roos, Steen-Adams, Stevens, Vukomanovic, White, Bowman
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological 'pathology': that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales.…
Year: 2016
Type: Document
Source: TTRS

Balch, Nagy, Archibald, Bowman, Moritz, Roos, Scott, Williamson
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to…
Year: 2016
Type: Document
Source: TTRS

Tyson, Lantz, Ban
The Inuvialuit Settlement Region (ISR) in the western Canadian Arctic is experiencing environmental changes that affect subsistence harvesting practices and are of concern to local communities. In order to assess the impacts of multiple disturbances on culturally important…
Year: 2016
Type: Document
Source: TTRS

Steelman
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance…
Year: 2016
Type: Document
Source: TTRS

Lewis, Schmutz, Amundson, Lindberg
1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge…
Year: 2016
Type: Document
Source: TTRS

Ferster, Eskelson, Andison, LeMay
Wildfires are a common disturbance event in the Canadian boreal forest. Within event boundaries, the level of vegetation mortality varies greatly. Understanding where surviving vegetation occurs within fire events and how this relates to pre-fire vegetation, topography, and fire…
Year: 2016
Type: Document
Source: TTRS