Document


Title

Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest
Document Type: Journal Article
Author(s): Tyler L. Lewis; Joel A. Schmutz; Courtney L. Amundson; Mark S. Lindberg
Publication Year: 2016

Cataloging Information

Keyword(s):
  • boreal forest
  • climate change
  • climate change
  • communities
  • conservation
  • Dabblers
  • Distributions
  • disturbance
  • Divers
  • fire management
  • management
  • resilience
  • severity
  • waterfowl
  • Waterfowl Breeding Population and Habitat Survey
  • wildfire
  • wildfires
Region(s):
Record Maintained By:
Record Last Modified: March 21, 2019
FRAMES Record Number: 55354
Tall Timbers Record Number: 33353
TTRS Location Status: Not in file
TTRS Call Number: Available
TTRS Abstract Status: Fair use, Okay

This bibliographic record was either created or modified by the Tall Timbers Research Station and Land Conservancy and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of the Tall Timbers Research Station and Land Conservancy.

Description

1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds - dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1-20% burned), medium (21-60%) and large (>60%) burns.5. Policy implications: Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression, seem to have limited impacts on waterfowl abundance and productivity. For waterfowl managers, our results suggest that adaptive models of waterfowl harvest, which annually guide hunting quotas, do not need to emphasize fires when integrating climate change effects. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression, seem to have limited impacts on waterfowl abundance and productivity. For waterfowl managers, our results suggest that adaptive models of waterfowl harvest, which annually guide hunting quotas, do not need to emphasize fires when integrating climate change effects. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

Online Link(s):
Citation:
Lewis, T. L., J. A. Schmutz, C. L. Amundson, and M. S. Lindberg. 2016. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest. Journal of Applied Ecology, v. 53, no. 6, p. 1746-1754. 10.1111/1365-2664.12705.