Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 72

Smith, Kolden, Paveglio, Cochrane, Bowman, Moritz, Kliskey, Alessa, Hudak, Hoffman, Lutz, Queen, Goetz, Higuera, Boschetti, Flannigan, Yedinak, Watts, Strand, van Wagtendonk, Anderson, Stocks, Abatzoglou
Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process.…
Year: 2016
Type: Document
Source: TTRS

Episode 3 of the Fire Danger Learning System describes the dataflow of weather data into the various databases and processors that provide fire danger calculations for the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Pimont, Parsons, Rigolot, deColigny, Dupuy, Dreyfus, Linn
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose. We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a…
Year: 2016
Type: Document
Source: TTRS

Fischer, Spies, Steelman, Moseley, Johnson, Bailey, Ager, Bourgeron, Charnley, Collins, Kline, Leahy, Littell, Millington, Nielsen-Pincus, Olsen, Paveglio, Roos, Steen-Adams, Stevens, Vukomanovic, White, Bowman
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological 'pathology': that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales.…
Year: 2016
Type: Document
Source: TTRS

Carroll, Paveglio
One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and…
Year: 2016
Type: Document
Source: TTRS

Diaz, Steelman, Nowell
As fire management agencies seek to implement more flexible fire management strategies, local understanding and support for these strategies become increasingly important. One issue associated with implementing more flexible fire management strategies is educating local…
Year: 2016
Type: Document
Source: TTRS

Barrett, Loboda, McGuire, Genet, Hoy, Kasischke
Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we…
Year: 2016
Type: Document
Source: TTRS

Hayasaka, Tanaka, Bieniek
Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by…
Year: 2016
Type: Document
Source: TTRS

Kerns, Kim, Kline, Day
We examined landscape exposure to wildfire potential, insects and disease risk, and urban and exurban development for the conterminous US (CONUS). Our analysis relied on spatial data used by federal agencies to evaluate these stressors nationally. We combined stressor data with…
Year: 2016
Type: Document
Source: TTRS

Wigtil, Hammer, Kline, Mockrin, Stewart, Roper, Radeloff
The hazards-of-place model posits that vulnerability to environmental hazards depends on both biophysical and social factors. Biophysical factors determine where wildfire potential is elevated, whereas social factors determine where and how people are affected by wildfire. We…
Year: 2016
Type: Document
Source: TTRS

A pictorial poster showing many cloud formations and what these clouds mean in regards to fire weather and fire behavior.
Year: 2016
Type: Document
Source: FRAMES

Ziel, Kurth, Saperstein
Webinar with Robert (Zeke) Ziel, Laurie Kurth, and Lisa Saperstein. Organized by the Fire Modeling and Analysis Committee. Recorded on May 24, 2016. Robert (Zeke) Ziel: Using FFMC and DMC to assess fuel moisture and use of BUI to help adjust ERC values Laurie Kurth: Some…
Year: 2016
Type: Media
Source: FRAMES

Alden, Strader, Ziel
Alaska Interagency Fall Fire Review | Wedresday, October 12, 2016Presenter: Heidi Strader and Robert Ziel, with input from Sharon Alden
Year: 2016
Type: Media
Source: FRAMES

Saltenberger
Alaska Fire Science Consortium Workshop | Thursday, October 13, 2016Presenter: John Saltenberger
Year: 2016
Type: Media
Source: FRAMES

The Wildland Fire Library is a collection of long-term assessments, fire progressions, fire behavior reports, and other documents and resources to support fire modeling and assessment of long-duration fires. Each file is tied to some event with a location, a start date, and…
Year: 2016
Type: Website
Source: FRAMES

The National Cohesive Wildland Fire Management Strategy is a collaborative process to seek national, all-lands solutions to wildland fire management issues, focusing on three goals: Restore and maintain resilient landscapes, create fire adapted communities and, safe and…
Year: 2016
Type: Website
Source: FRAMES

Belval, Wei, Bevers
Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Bova, Mell, Hoffman
Simulating an advancing fire front may be achieved within a Lagrangian or Eulerian framework. In the former, independently moving markers are connected to form a fire front, whereas in the latter, values representing the moving front are calculated at points within a fixed grid…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Smith, Kolden, Paveglio, Cochrane, Bowman, Moritz, Kliskey, Alessa, Hudak, Hoffman, Lutz, Queen, Goetz, Higuera, Boschetti, Flannigan, Yedinak, Watts, Strand, van Wagtendonk, Anderson, Stocks, Abatzoglou
Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process.…
Year: 2016
Type: Document
Source: FRAMES

Schoennagel, Morgan, Balch, Dennison, Harvey, Hutto, Krawchuk, Moritz, Rasker, Whitlock
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. In recent decades, state and federal policymakers, tribes, and others are confronting longer fire seasons (Jolly et al. 2015), more large fires (Dennison et al. 2014), a tripling of homes…
Year: 2016
Type: Document
Source: FRAMES

Schoennagel, Morgan, Balch, Dennison, Harvey, Hutto, Krawchuk, Moritz, Rasker, Whitlock
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. The four biggest fire seasons since 1960 have all occurred in the last 10 years, leading to fears of a ‘new normal’ for wildfire. Fire fighters and forest managers are overwhelmed, and it is…
Year: 2016
Type: Document
Source: FRAMES

Flannigan, Wotton, Marshall, de Groot, Johnstone, Jurko, Cantin
The objective of this paper is to examine the sensitivity of fuel moisture to changes in temperature and precipitation and explore the implications under a future climate. We use the Canadian Forest Fire Weather Index System components to represent the moisture content of fine…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Wiggins, Veraverbeke, Henderson, Karion, Miller, Lindaas, Commane, Sweeney, Luus, Tosca, Dinardo, Wofsy, Miller, Randerson
Relationships between boreal wildfire emissions and day-to-day variations in meteorological variables are complex and have important implications for the sensitivity of high-latitude ecosystems to climate change. We examined the influence of environmental conditions on boreal…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Di Giuseppe, Pappenberger, Wetterhall, Krzeminski, Camia, Libertà, San Miguel
A global fire danger rating system driven by atmospheric model forcing has been developed with the aim of providing early warning information to civil protection authorities. The daily predictions of fire danger conditions are based on the U.S. Forest Service National Fire-…
Year: 2016
Type: Document
Source: FRAMES

Ziel, Strader, Pyne, Henderson
Presented at the 2016 Spring Alaska Fire Science Workshop. Weather information, surface observations and forecasts, is among the most widely viewed topics on the web. It is the one way that the history, current setting, and forecast fire potential can be quickly compared. Fire…
Year: 2016
Type: Document
Source: FRAMES