Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 101 - 125 of 2574

Masrur, Taylor, Harris, Barnes, Petrov
Although the link between climate change and tundra fire activity is well-studied, we lack an understanding of how fire, vegetation, and topography interact to either amplify or dampen climatic effects on these tundra fires at Pan-Arctic scale. This study investigated the…
Year: 2022
Type: Document
Source: FRAMES

Song, Xu, Li, Oppong
Wildfire causes environmental, economic, and human problems or losses. This study reviewed wildfires induced by lightning strikes. This review focuses on the investigations of lightning mechanisms in the laboratory. Also, the paper aims to discuss some of the modeling studies on…
Year: 2024
Type: Document
Source: FRAMES

Zhang, Wang, Yang, Liu
Global climate change and extreme weather has a profound impact on wildfire, and it is of great importance to explore wildfire patterns in the context of global climate change for wildfire prevention and management. In this paper, a wildfire spatial prediction model based on…
Year: 2024
Type: Document
Source: FRAMES

Phillips, Rogers, Elder, Cooperdock, Moubarak, Randerson, Frumhoff
Wildfires in boreal forests release large quantities of greenhouse gases to the atmosphere, exacerbating climate change. Here, we characterize the magnitude of recent and projected gross and net boreal North American wildfire carbon dioxide emissions, evaluate fire management as…
Year: 2022
Type: Document
Source: FRAMES

Zhu, Xu, Jia
Wildfire is recognized as an increasing threat to the southern boreal forests and the permafrost beneath them, with less occurring over the cold continuous permafrost than before. However, we show that continuous permafrost was a major contribution to wildfire expansion in the…
Year: 2023
Type: Document
Source: FRAMES

Yoseph, Hoy, Elder, Ludwig, Thompson, Miller
Rapid warming in Arctic tundra may lead to drier soils in summer and greater lightning ignition rates, likely culminating in enhanced wildfire risk. Increased wildfire frequency and intensity leads to greater conversion of permafrost carbon to greenhouse gas emissions. Here, we…
Year: 2023
Type: Document
Source: FRAMES

Masa, Kintzios, Vasileiou, Meditskos, Vrochidis, Kompatsiaris
Forest fires can have devastating effects on the environment, communities, individuals, economy, and climate change in many countries. During a forest fire crisis, massive amounts of data, such as weather patterns and soil conditions, become available. Efficient management,…
Year: 2023
Type: Document
Source: FRAMES

Schuur, Abbott, Commane, Ernakovich, Euskirchen, Hugelius, Grosse, Jones, Koven, Leshyk, Lawrence, Loranty, Mauritz, Olefeldt, Natali, Rodenhizer, Salmon, Schädel, Strauss, Treat, Turetsky
Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and…
Year: 2022
Type: Document
Source: FRAMES

Heal
[First paragraph] Firefighters are embarking on an ambitious experiment to stamp out blazes deep in the Alaskan wilderness as a way to avert carbon emissions in what experts say is a seismic shift in thinking in modern wildfire management that has traditionally focused only on…
Year: 2023
Type: Document
Source: FRAMES

Frumhoff, Phillips, Rogers
[Last paragraph of the opinion] We cannot stop global warming without dramatically reducing and ultimately eliminating fossil fuel emissions. But we also must keep boreal wildfire emissions in check. We ignore these wildfires and their accelerating climate impacts at our peril.…
Year: 2022
Type: Document
Source: FRAMES

Macander, Nelson, Nawrocki, Frost, Orndahl, Palm, Wells, Goetz
Widespread changes in the distribution and abundance of plant functional types (PFTs) are occurring in Arctic and boreal ecosystems due to the intensification of disturbances, such as fire, and climate-driven vegetation dynamics, such as tundra shrub expansion. To understand how…
Year: 2022
Type: Document
Source: FRAMES

Weiss, Marshall, Hayes, Nicolsky, Buma, Lucash
In interior Alaska, increasing wildfire activity associated with climate change is projected to continue, potentially altering regional forest composition. Conifers are emblematic of boreal forest; however, greater frequency and severity of wildfires has been found to favor…
Year: 2023
Type: Document
Source: FRAMES

Massey, Rogers, Berner, Cooperdock, Mack, Walker, Goetz
Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire. This shift in composition has the potential to generate biophysical cooling via increased land surface albedo. Here we use Landsat-derived maps of continuous tree…
Year: 2023
Type: Document
Source: FRAMES

Jandt
This Alaska Fire Science Consortium Researh Brief highlights an illustrated 75-page report "Advancing Wildfire Preparedness and Planning in Anchorage - Wildfire Exposure and Egress Study," authored by Dr. Jen Schmidt (UAA) and retired Alaska forester John See. The study was part…
Year: 2023
Type: Document
Source: FRAMES

Schmidt, See
Advancing Wildfire Preparedness and Planning takes an in-depth look at the dynamic factors that are impacting wildfire occurrence for the most populated geographic area in the 49th State of Alaska, the Municipality of Anchorage (MOA). The length and severity of recent fire…
Year: 2023
Type: Document
Source: FRAMES

Zhang, Douglas, Brodylo, Jorgenson
The permafrost-fire-climate system has been a hotspot in research for decades under a warming climate scenario. Surface vegetation plays a dominant role in protecting permafrost from summer warmth, thus, any alteration of vegetation structure, particularly following severe…
Year: 2023
Type: Document
Source: FRAMES

Misios, Chrysanthou, Tsigaridis, Amiridis
The most extreme manifestation of a fire–weather interaction is the formation of pyrocumulonimbus (pyroCb) thunderstorms, triggered by super-heated updrafts, which can eject smoke at altitudes exceeding 20 Km. In this study, we investigated climate-related impacts from the most…
Year: 2023
Type: Document
Source: FRAMES

Ruess, Winton, Adams
Over the past several decades, growth declines and mortality of trembling aspen throughout western Canada and the United States have been linked to drought, often interacting with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline” throughout much of…
Year: 2021
Type: Document
Source: FRAMES

Jorgenson, Kanevskiy, Roland, Hill, Schirokauer, Stehn, Schroeder, Shur
Permafrost formation and degradation creates a highly patchy mosaic of boreal peatland ecosystems in Alaska driven by climate, fire, and ecological changes. To assess the biophysical factors affecting permafrost dynamics, we monitored permafrost and ecological conditions in…
Year: 2022
Type: Document
Source: FRAMES

Lonergan
Wildfires have become more destructive over recent decades with climate change, so understanding how fire regimes will change with further climate change is critical for effective fire management practices. Paleofire records provide insight into how fire regimes have responded…
Year: 2023
Type: Document
Source: FRAMES

Calef, Schmidt, Varvak, Ziel
The boreal forest of northwestern North America covers an extensive area, contains vast amounts of carbon in its vegetation and soil, and is characterized by extensive wildfires. Catastrophic crown fires in these forests are fueled predominantly by only two evergreen needle-leaf…
Year: 2023
Type: Document
Source: FRAMES

Burnett, Schütte, Harms
A warming climate combined with frequent and severe fires cause permafrost to thaw, especially in the region of discontinuous permafrost, where soil temperatures may only be a few degrees below 0 °C. Soil thaw releases carbon and nitrogen into the actively cycling pools, and…
Year: 2022
Type: Document
Source: FRAMES

Buma, Hayes, Weiss, Lucash
Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to…
Year: 2022
Type: Document
Source: FRAMES

Berner, Goetz
The boreal forest biome is a major component of Earth's biosphere and climate system that is projected to shift northward due to continued climate change over the coming century. Indicators of a biome shift will likely first be evident along the climatic margins of the boreal…
Year: 2022
Type: Document
Source: FRAMES

Hanes
The Canadian Forest Fire Danger Rating System (CFFDRS) is the cornerstone of contemporary fire management in Canada. Although the System is conceptually robust there are known issues, primarily based on limitations that existed over the last 75 years of its development. One area…
Year: 2022
Type: Document
Source: FRAMES