Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 62

Langford, Kumar, Hoffman
Wildfires are the dominant disturbance impacting many regions in Alaska and are expected to intensify due to climate change. Accurate tracking and quantification of wildfires are important for climate modeling and ecological studies in this region. Remote sensing platforms (e.g…
Year: 2018
Type: Document
Source: FRAMES

Power, Codding, Taylor, Swetnam, Magargal, Bird, O'Connell
The primacy of past human activity in triggering change in earth’s ecosystems remains a contested idea. Treating human-environmental dynamics as a dichotomous phenomenon – turning “on” or “off” at some tipping point in the past – misses the broader, longer-term, and varied role…
Year: 2018
Type: Document
Source: FRAMES

Petrescu, Aversa, Abu-Lebdeh, Apicella, Petrescu
The main idea is that, as the forests of the planet are getting smaller, too much wood is cut and the forests are made too slow, there are also large forest fires due to excessive heat, of people arguing with the law, or simply by chance. Extinguishing fires are generally…
Year: 2018
Type: Document
Source: FRAMES

Malevich, Guiterman, Margolis
We developed a new software package, burnr, for fire history analysis and plotting in the R statistical programming environment. It was developed for tree-ring fire-scar analysis, but is broadly applicable to other event analyses (e.g., avalanches, frost rings, or culturally…
Year: 2018
Type: Document
Source: FRAMES

Jolly, Bradshaw, Freeborn
Year: 2018
Type: Media
Source: FRAMES

Tian, Wang, Zhou, Wang
Forest disturbances provide an important reference and a basis for studying the carbon cycle, biodiversity, and eco-social development. Remote sensing is a promising data source for monitoring forest ecosystem dynamics and detecting disturbance areas. This research used a…
Year: 2018
Type: Document
Source: FRAMES

Noonan
This seminar is part of the USFS Missoula Fire Lab Seminar Series. This research examines perceptions of risk by decision-makers during wildland fires using newly available data from the Wildland Fire Decision Support System (WFDSS), with an eye toward better understanding how…
Year: 2018
Type: Media
Source: FRAMES

Wei, Larsen
Boreal forest fire history is typically reconstructed using tree-ring based time since last fire (TSLF) frequency distributions from across the landscape. We employed stochastic landscape fire simulations to assess how large a study area and how many TSLF sample-points are…
Year: 2018
Type: Document
Source: FRAMES

Treadwell
Dr. Morgan Treadwell, with the Texas A&M AgriLife Extension Service, teaches ranchers about using prescribed burning, then uses drones to review burn footage and dissect the burn piece by piece.
Year: 2018
Type: Media
Source: FRAMES

Schoennagel, Godwin, Miller
The combination of frequent droughts, changing climate conditions, and longer fire seasons along with urban development expansion into wildland areas has resulted in more difficult conditions for managing wildfires. Wildfires are causing more frequent and wider-ranging societal…
Year: 2018
Type: Media
Source: FRAMES

Jandt
The Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign funded by NASA’s Terrestrial Ecology Program began in 2015. Its science objectives are to 1) improve understanding of Arctic and boreal ecosystem response to environmental change, and 2) provide data for informed…
Year: 2018
Type: Document
Source: FRAMES

Pyne
Fire is special. Even among the ancient elements, fire is different because it alone is a reaction. It synthesizes its surroundings; it takes its character from its context. It varies by place, by culture, and by time. It has no single expression. There is no single way to…
Year: 2018
Type: Document
Source: FRAMES

Toombs, Weber
Today’s extended fire seasons and large fire footprints have prompted state and federal land-management agencies to devote increasingly large portions of their budgets to wildfire management. As fire costs continue to rise, timely and comprehensive fire information becomes…
Year: 2018
Type: Media
Source: FRAMES

Weber
Learn what is new with RECOVER in 2018. This DSS has been used on 60 wildfires since it first began just a few years ago. RECOVER can be used to assist in post-fire planning and long-term monitoring. Take a look at this video to see how you can apply RECOVER in your work.
Year: 2018
Type: Media
Source: FRAMES

Fisher, White, Thoman
Alaska experiences extremely variable and increasingly active wildland fire seasons, with 6.6 million acres burned in 2004 and 5.1 million in 2015 respectively. The majority of acres burn in relatively brief periods of extremely warm and dry weather. Our hypothesis is that there…
Year: 2018
Type: Media
Source: FRAMES

Pyne
Given the nature of the deliverables - books, with copyrights - it isn't possible to reproduce the full texts here. Instead, I am including the tables of contents and prologues for the four regions the grant has touched on - oak woodlands, Pacific Northwest, North east, and…
Year: 2018
Type: Document
Source: FRAMES

Pyne
To complement the narrative of recent fire history by writing short regional surveys under the collective title To the Last Smoke. These surveys will be focused on the Pacific Northwest, oak woodlands, and Alaska.
Year: 2018
Type: Project
Source: FRAMES

Hawthorne, Mitchell
In recent years a number of studies have suggested that trends in wildfire can be seen at a regional, national and global scale, and can be explained by interactions with factors such as anthropogenic activity and climate. As future susceptibility to fire is expected to be high…
Year: 2018
Type: Document
Source: FRAMES

Jorgenson, Jorgenson, Boldenow, Orndahl
Rapid warming has occurred over the past 50 years in Arctic Alaska, where temperature strongly affects ecological patterns and processes. To document landscape change over a half century in the Arctic National Wildlife Refuge, Alaska, we visually interpreted geomorphic and…
Year: 2018
Type: Document
Source: FRAMES

Potter
The analysis of wildfire impacts at the scale of less than a square kilometer can reveal important patterns of vegetation recovery and regrowth in freshwater Arctic and boreal regions. For this study, NASA Landsat burned area products since the year 2000, and a near 20-year…
Year: 2018
Type: Document
Source: FRAMES

Hudak, Newingham, Strand, Morgan
Mixed severity wildfires burn large areas in western North America forest ecosystems in most years and this is expected to continue or increase with climate change. Little is understood about vegetation recovery and changing fuel conditions more than a decade post-fire because…
Year: 2018
Type: Document
Source: FRAMES

Hudak, Morgan, Newingham, Strand
Mixed severity wildfires burn large areas in western North America forest ecosystems in most years and this is expected to continue or increase with climate change. Little is understood about vegetation recovery and changing fuel conditions 7-15 years post-fire because it…
Year: 2018
Type: Project
Source: FRAMES

Miller
The Alaska Region achieves a unique resonance of natural hazards spanning the surface to the top of the troposphere and civilian/multi-agency activities impacted directly by them.  The remote and data sparse expanses of this region elevate the value to forecasters of satellite-…
Year: 2018
Type: Media
Source: FRAMES

Stotts, Lahm, Standish
Fire managers use prescribed fire and some wildfires to meet resource management objectives, like restoring and maintaining ecological processes, watershed function, and wildlife habitat, as well as to reduce fuels and mitigate the risk of severe wildfires. However, public…
Year: 2018
Type: Document
Source: FRAMES