Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 26 - 50 of 6460

Harvey, Enright
Extreme fire seasons in both hemispheres in 2019 and 2020 have highlighted the strong link between climate warming and altered fire regimes. While shifts in fire regimes alone can drive profound changes in plant populations, communities, and ecosystems, the direct effects of…
Year: 2022
Type: Document
Source: FRAMES

Zolkos, MacDonald, Hung, Schade, Ludwig, Mann, Treharne, Natali
Northern high-latitude deltas are hotspots of biogeochemical processing, terrestrial-aquatic connectivity, and, in Alaska’s Yukon-Kuskokwim Delta (YKD), tundra wildfire. Yet, wildfire effects on aquatic biogeochemistry remain understudied in northern delta regions, thus limiting…
Year: 2022
Type: Document
Source: FRAMES

Zhang, Wang, Liu
Wildfires not only severely damage the natural environment and global ecological balance but also cause substantial losses to global forest resources and human lives and property. Unprecedented fire events such as Australia's bushfires have alerted us to the fact that wildfire…
Year: 2022
Type: Document
Source: FRAMES

Zhou, Biro, Wong, Batterman, Staver
The biogeochemical signature of fire shapes the functioning of many ecosystems. Fire changes nutrient cycles not only by volatilizing plant material, but also by altering organic matter decomposition—a process regulated by soil extracellular enzyme activities (EEAs). However,…
Year: 2022
Type: Document
Source: FRAMES

Fernández-García, Marcos-Porras, Francos, Jiménez-Morillo, Calvo
[from the text] Impacts of fire on forest soils have been widely studied in the last decades. Early studies compared burned and unburned areas, revealing that soil properties and dynamics are significantly affected by fire. Moreover, the advancements in soil and fire sciences…
Year: 2023
Type: Document
Source: FRAMES

Gui, Wang, Hu, Zhou, Wan
As a general disturbance in terrestrial ecosystems, fire can have far-reaching consequences on the carbon (C) cycle. Although soil respiration (SR) is important in regulating atmospheric CO2 concentrations, a general pattern of the response of SR to fire in terrestrial…
Year: 2023
Type: Document
Source: FRAMES

Lake
As collaborative fire management projects between tribal and non-tribal entities are increasingly recognized for their potential to achieve both ecological and cultural fire management goals in a warming climate, it’s important that non-tribal researchers and resource managers…
Year: 2021
Type: Media
Source: FRAMES

Beginning in 1973, the National Silviculture Workshop (NSW) purposely brought together USDA Forest Service scientists from Research and Development and forest managers from the National Forest System to meet face-to-face to build a science and management partnership in…
Year: 2022
Type: Document
Source: FRAMES

Franz
The topic of “managed wildfire” is mired in complexity, starting with what to call it. This fire management approach has been known as “prescribed natural fire,” “wildland fire use,” “resource objective fire,” and more. All names refer to the same essential idea: leveraging…
Year: 2023
Type: Media
Source: FRAMES

Pyne
The Pyrocene tells the story of what happened when a fire-wielding species, humanity, met an especially fire-receptive time in Earth's history. Since terrestrial life first appeared, flames have flourished. Over the past two million years, however, one genus gained the ability…
Year: 2022
Type: Document
Source: FRAMES

Lucash, Marshall, Weiss, McNabb, Nicolsky, Flerchinger, Link, Vogel, Scheller, Abramoff, Romanovsky
Boreal ecosystems account for 29% of the world's total forested area and contain more carbon than any other terrestrial biome. Over the past 60 years, Alaska has warmed twice as rapidly as the contiguous U.S. and wildfire activity has increased, including the number of fires,…
Year: 2023
Type: Document
Source: FRAMES

Hessburg
It's no secret that wildfires in the west have been drastically increasing in size and destructive power. But what, if anything, can be done about it? Join world-renown and award-winning USFS research ecologist Dr. Paul Hessburg as he explains how we got here and restores our…
Year: 2017
Type: Media
Source: FRAMES

Hessburg
We have all seen the news - hotter summers, and bigger, badder wildfires. What's going on? How did we get here? Paul tells a fast-paced story of western US forests - unintentionally yet massively changed by a century of management. He relates how these changes, coupled with a…
Year: 2017
Type: Media
Source: FRAMES

East, AghaKouchak, Caprarelli, Filippelli, Florindo, Luce, Rajaram, Russell, Santín, Santos
Fire has always been an important component of many ecosystems, but anthropogenic global climate change is now altering fire regimes over much of Earth's land surface, spurring a more urgent need to understand the physical, biological, and chemical processes associated with fire…
Year: 2023
Type: Document
Source: FRAMES

Wildfires are increasing in frequency and intensity in part because of changing climate conditions and decades of fire suppression. Though fire is a natural ecological process in many forest ecosystems, extreme wildfires now pose a growing threat to the nation’s natural…
Year: 2023
Type: Document
Source: FRAMES

Stevens, Dillon, Manley, Povak, Nepal
Introduction to SCIENCE x Day 4, brief overview by Jens StevensDelivering wildfire risk information targeted to the community level, presented by Greg DillonJuggling risks and tradeoffs toward a more resilient future: the known, unknown, unknowable, and the unpleasant, presented…
Year: 2023
Type: Media
Source: FRAMES

Erazo-Mora, Montalván-Burbano, Aburto, Matus-Baeza, Jofré-Fernández, Durán-Cuevas, Dörner, Dippold, Merino-Guzmán
As wildfires have increased and become more frequent in recent years, researchers area focusing on how wildfires affect ecosystem resilience, which has serious implications for the recovery and protection of native forests and plantations. Most physicochemical and biological…
Year: 2023
Type: Document
Source: FRAMES

The SCIENCEx webinar series brings together scientists and land management experts from across U.S. Forest Service research stations and beyond to explore the latest science and best practices for addressing large natural resource challenges across the country. These webinars…
Year: 2023
Type: Media
Source: FRAMES

Wu, Li, Li, Zhang, Liu, Zhao, Shen, Hao, Zhang
Fire, as a strong disturbance type, can exert significant impacts on the biosphere, hydrosphere, geosphere, cryosphere, atmosphere and human society. It can inherently trigger both critical transitions in ecosystems and dramatic changes in land cover. However, the general…
Year: 2023
Type: Document
Source: FRAMES

Pellegrini, Harden, Georgiou, Hemes, Malhotra, Nolan, Jackson
One paradigm in biogeochemistry is that frequent disturbance tends to deplete carbon (C) in soil organic matter (SOM) by reducing biomass inputs and promoting losses. However, disturbance by fire has challenged this paradigm because soil C responses to frequent and/or intense…
Year: 2022
Type: Document
Source: FRAMES

Thoman, Frost
The 2022 fire season in Alaska was unprecedented. Southwest Alaska experienced record-breaking fires that impacted local communities and challenged management resources. This webinar will review the weather, climate, and ecological factors that contributed to the severe wildfire…
Year: 2022
Type: Media
Source: FRAMES

Grabinski
[from the text] June 2022 in Alaska was a remarkable month for wildfire. An incredible 1.84 million acres burned, nearly tying the all-time record for June. Notably, 1.2 million acres burned in southwestern Alaska, more than doubling the area burned in that region since the…
Year: 2022
Type: Document
Source: FRAMES

Jandt, Grabinski
The 2nd Alaska Fire Science Consortium (AFSC) Research-to-Operations (R2O) workshop convened May 12-13 at the University of Alaska Murie Building.The 1.5-day workshop was held following NASA ABoVE’s 8th Annual Science Team Meeting as an opportunity for researchers and managers…
Year: 2023
Type: Document
Source: FRAMES

Stahl, Andrus, Hicke, Hudak, Bright, Meddens
Remote sensing is widely used to detect forest disturbances (e.g., wildfires, harvest, or outbreaks of pathogens or insects) over spatiotemporal scales that are infeasible to capture with field surveys. To understand forest ecosystem dynamics and the ecological role of human and…
Year: 2023
Type: Document
Source: FRAMES

Gao, Schwilk
In ecosystems where trees and grasses coexist, some grass species are found only in open habitats and others persist under trees. The persistence of shade intolerant grasses in ecosystems such as open woodlands and savannas depends on recurrent fires to open the tree canopy.…
Year: 2022
Type: Document
Source: FRAMES