Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 126 - 150 of 3248

Stonesifer
Part of the Science You Can Use Spring 2022 Webinar Series sponsored by the Rocky Mountain Research Station Aircraft are important fire management tools, but their use can bring substantial costs and associated risks. We developed the Aviation Use Summary (AUS), which is a…
Year: 2022
Type: Media
Source: FRAMES

Sargentis, Ioannidis, Bairaktaris, Frangedaki, Dimitriadis, Iliopoulou, Koutsoyiannis, Lagaros
There is a widespread perception that every year wildfires are intensifying on a global scale, something that is often used as an indicator of the adverse impacts of global warming. However, from the analysis of wildfires that have occurred in the US, Canada, and Mediterranean…
Year: 2022
Type: Document
Source: FRAMES

[from the text] Under this strategy, the Forest Service will work with partners to engineer a paradigm shift by focusing fuels and forest health treatments more strategically and at the scale of the problem, using the best available science as the guide. At the Forest Service,…
Year: 2022
Type: Document
Source: FRAMES

Nimmo, Andersen, Archibald, Boer, Brotons, Parr, Tingley
[from the text] Fire is one of Earth's most potent agents of ecological change. This Special Issue comes in the wake of a series of extreme wildfires across the world, from the Amazon, to Siberia, California, Portugal, South Africa and eastern Australia (Duane et al., 2021).…
Year: 2022
Type: Document
Source: FRAMES

Ballinger
Alaska’s central and eastern interior (CEI), including the greater Tanana Valley and Yukon Flats, has consistently been the most fire prone area of the state during the last two decades. Toward operational and research applications, several surface fire weather indicators have…
Year: 2022
Type: Media
Source: FRAMES

Littell, Trainor
Sarah Trainor & Jeremy Littell present at the 2021 Association for Fire Ecology Conference special session: The Nexus of Climate Change and Fire: Taking Science to Action Addressing the unprecedented challenges of climate change, wildland fire, and human land use requires…
Year: 2021
Type: Media
Source: FRAMES

Khan, Ghassemi
Growing wildfire-related transmission and distribution line outages have become a severe problem and a main concern for some utilities. This manuscript aims to integrate wildfire risk with the vulnerability of overhead lines through a probabilistic approach where a combined line…
Year: 2022
Type: Document
Source: FRAMES

York, Bhatt, Gargulinski, Grabinski, Jain, Soja, Thoman, Ziel
Despite the low annual temperatures and short growing seasons that are characteristic of high northern latitudes (HNL), wildland fire is the dominant ecological disturbance within the region's boreal forest, the world's largest terrestrial biome. The boreal forest, also known as…
Year: 2020
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service Resource Brief for the Arctic Inventory and Monitory Network which briefly summarizes the status of fire extent and frequency in ARCN parks and highlights the historic fire record (WFMI) & perimeter improvements.  The brief is written for a non-…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service web article summarizes fire effects after the 2018 Andrew Creek fire in the Yukon-Charley Rivers National preserve including permafrost and watershed effects and also taking into account the long-term climate trends in the area.
Year: 2021
Type: Document
Source: FRAMES

Hanes, Wotton, McFayden, Jurko
The Fire Weather Index (FWI) System codes and indices are commonly communicated and interpreted using a classification system (i.e., Low, Moderate, High, Extreme) by fire management agencies. Adjective classes were developed provincially shortly after the FWI System was…
Year: 2021
Type: Document
Source: FRAMES

Foster, Shuman, Rogers, Walker, Mack, Bourgeau-Chavez, Veraverbeke, Goetz
Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more…
Year: 2022
Type: Document
Source: FRAMES

Essen, McCaffrey, Abrams, Paveglio
Numerous wildfire management agencies and institutions rely primarily on simple risk approaches to wildfire that focus on technical risk assessments that do not reflect the complexity of contemporary wildfire risk. This review paper argues that such insufficiently complex…
Year: 2023
Type: Document
Source: FRAMES

Balch, Abatzoglou, Joseph, Koontz, Mahood, McGlinchy, Cattau, Williams
Night-time provides a critical window for slowing or extinguishing fires owing to the lower temperature and the lower vapour pressure deficit (VPD). However, fire danger is most often assessed based on daytime conditions1,2, capturing what promotes fire spread rather than what…
Year: 2022
Type: Document
Source: FRAMES

Demange, Di Fonso, Di Stefano, Vittorini
In the last decade, wildfires have become wider and more destructive. Climate change and the growth of urban areas are among the main factors that increase the risk of large-scale fires. This risk can be lowered with preventive measures. Among them, firefighting lines are used…
Year: 2022
Type: Document
Source: FRAMES

Arab, Khodaei, Eskandarpour, Thompson, Wei
Wildfires pose a significant challenge to the natural and the built environments, as well as the safety and economic wellbeing of the communities residing in wildfire-prone areas. The electric power grid is specifically among the built environments most affected by, and…
Year: 2021
Type: Document
Source: FRAMES

Xiao, Feng, Li
As an inherent element of the Earth’s ecosystem, forest and vegetation fires are one of the key contributors to and direct consequences of climate change. Given that topography is one of the key drivers of forest landscapes and fire behavior, it is important to clarify what the…
Year: 2022
Type: Document
Source: FRAMES

Masrur, Taylor, Harris, Barnes, Petrov
Although the link between climate change and tundra fire activity is well-studied, we lack an understanding of how fire, vegetation, and topography interact to either amplify or dampen climatic effects on these tundra fires at Pan-Arctic scale. This study investigated the…
Year: 2022
Type: Document
Source: FRAMES

Beck, Simpson
The 2003 fire season in British Columbia, Canada was one of the worst in recent history. Fire in the wildland-urban interface destroyed over 334 homes and many businesses, and forced the evacuation of over 45,000 people. Drought cycles and forest health decline have contributed…
Year: 2007
Type: Document
Source: FRAMES

El-Madafri, Peña, Olmedo-Torre
This study introduces a novel hierarchical domain-adaptive learning framework designed to enhance wildfire detection capabilities, addressing the limitations inherent in traditional convolutional neural networks across varied forest environments. The framework innovatively…
Year: 2024
Type: Document
Source: FRAMES

Song, Xu, Li, Oppong
Wildfire causes environmental, economic, and human problems or losses. This study reviewed wildfires induced by lightning strikes. This review focuses on the investigations of lightning mechanisms in the laboratory. Also, the paper aims to discuss some of the modeling studies on…
Year: 2024
Type: Document
Source: FRAMES

Zhang, Wang, Yang, Liu
Global climate change and extreme weather has a profound impact on wildfire, and it is of great importance to explore wildfire patterns in the context of global climate change for wildfire prevention and management. In this paper, a wildfire spatial prediction model based on…
Year: 2024
Type: Document
Source: FRAMES

Xu, Li, Zhang, Liu, Zhang
In the context of large-scale fire areas and complex forest environments, the task of identifying the subtle features and aspects of fire can pose a significant challenge for the deep learning model. As a result, to enhance the model’s ability to represent features and its…
Year: 2024
Type: Document
Source: FRAMES

Li, Tang, Li, Dou, Li
Background: Extreme wildfires pose a serious threat to forest vegetation and human life because they spread more rapidly and are more intense than conventional wildfires. Detecting extreme wildfires is challenging due to their visual similarities to traditional fires, and…
Year: 2024
Type: Document
Source: FRAMES

Phillips, Rogers, Elder, Cooperdock, Moubarak, Randerson, Frumhoff
Wildfires in boreal forests release large quantities of greenhouse gases to the atmosphere, exacerbating climate change. Here, we characterize the magnitude of recent and projected gross and net boreal North American wildfire carbon dioxide emissions, evaluate fire management as…
Year: 2022
Type: Document
Source: FRAMES