Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 245

Alexander, Taylor, Page
Using the 2013 Yarnell Hill fatality fire in Arizona as a backdrop, this paper considers whether the global wildland fire community has failed on-the-ground firefighters. To begin answering this question two specific lines of inquiry are addressed: (i) was the fire behavior…
Year: 2016
Type: Document
Source: FRAMES

Smith, Sparks, Kolden, Abatzoglou, Talhelm, Johnson, Boschetti, Lutz, Apostol, Yedinak, Tinkham, Kremens
Most landscape-scale fire severity research relies on correlations between field measures of fire effects and relatively simple spectral reflectance indices that are not direct measures of heat output or changes in plant physiology. Although many authors have highlighted…
Year: 2016
Type: Document
Source: TTRS

Episode 3 of the Fire Danger Learning System describes the dataflow of weather data into the various databases and processors that provide fire danger calculations for the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Episode 2 of the Fire Danger Learning Series discussing the forthcoming 2016 revision to the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Episode #1 of the Fire Danger Learning Series presents the components and indices that compose the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Pimont, Parsons, Rigolot, deColigny, Dupuy, Dreyfus, Linn
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose. We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a…
Year: 2016
Type: Document
Source: TTRS

Katuwal, Calkin, Hand
This study examines the production and efficiency of wildland fire suppression effort We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency…
Year: 2016
Type: Document
Source: TTRS

Drury, Rauscher, Banwell, Huang, Lavezzo
The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based software and data integration framework that organizes fire and fuels software applications into a single online application. IFTDSS is designed to make fuels treatment planning and analysis more…
Year: 2016
Type: Document
Source: TTRS

Sullivan, Sharples, Matthews, Plucinski
There is currently no fundamental understanding of the effects of topography on the behaviour of fires burning over a landscape. While a number of empirical models are employed operationally around the world, the effects of negative slopes on fire spread are ignored in all but…
Year: 2014
Type: Document
Source: TTRS

Mueller, Mell, Simeoni
Large eddy simulation (LES) based computational fluid dynamics (CFD) simulators have obtained increasing attention in the wildland fire research community, as these tools allow the inclusion of important driving physics. However, due to the complexity of the models, individual…
Year: 2014
Type: Document
Source: TTRS

Sullivan, McDonald
Current practices for measuring high heat flux in scenarios such as wildland forest fires use expensive, thermopile-based sensors, coupled with mathematical models based on a semi-infinite-length scale. Although these sensors are acceptable for experimental testing in…
Year: 2014
Type: Document
Source: FRAMES, TTRS

Stephens, Burrows, Buyantuyev, Gray, Keane, Kubian, Liu, Seijo, Shu, Tolhurst, van Wagtendonk
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors -- climate change, fire exclusion, and antecedent disturbance, collectively referred to as the 'mega-fire triangle' -- likely…
Year: 2014
Type: Document
Source: TTRS

Preisler
From the text ... 'In this special issue, we present a collection of papers that tackle some of the statistical issues concerned with characterizing wildfires and wildfire risk. These range from the issue of predicting locations and sizes of wildland fires at a landscape level…
Year: 2014
Type: Document
Source: TTRS

Krause, Kloster, Wilkenskjeld, Paeth
In this study, components of the Max Planck Institute Earth System Model were used to explore how changes in lightning induced by climate change alter wildfire activity. To investigate how climate change alters global flash frequency, simulations with the atmospheric general…
Year: 2014
Type: Document
Source: FRAMES

Steelman
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance…
Year: 2016
Type: Document
Source: TTRS

Barrett, Loboda, McGuire, Genet, Hoy, Kasischke
Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we…
Year: 2016
Type: Document
Source: TTRS

Hayasaka, Tanaka, Bieniek
Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by…
Year: 2016
Type: Document
Source: TTRS

Dash, Fraterrigo, Hu
Wildfire activity in boreal forests is projected to increase dramatically in response to anthropogenic climate change. By altering the spatial arrangement of fuels, land-cover configuration may interact with climate change to influence fire-regime dynamics at landscape and…
Year: 2016
Type: Document
Source: TTRS

Tohidi, Kaye
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be…
Year: 2016
Type: Document
Source: TTRS

Kobziar
From the text ... 'Fire on Earth: An Introduction's four sections are intended to stand alone, yet motivate intratext interest. References to other sections appear organically throughout, and invite bouts of rapid page-turning. In the preface, the authors also prepare the reader…
Year: 2014
Type: Document
Source: TTRS

Beatty, Smith
Dynamic soil water repellency is a pending challenge in water repellency research. The dynamic change or temporal dependence of repellency is commonly expressed as the persistence of repellency. Persistence, or dynamic changes in contact angle, are however, difficult to directly…
Year: 2014
Type: Document
Source: TTRS

Keane, Dillon, Drury, Innes, Morgan, Lutes, Prichard, Smith, Strand
From the introduction ... 'Announcing the release of new software packages for application in wildland fire science and management, two fields that are already fully saturated with computer technology, may seem a bit too much to many managers. However, there have been some…
Year: 2014
Type: Document
Source: TTRS

Cruz, Alexander
From the text ... 'Operational guides for predicting various aspects of wildland fire behavior, including crowning, are generally dependent on mathematical models that can take a variety of forms. The degree of accuracy in predictions of crown fire behavior is dependent on the…
Year: 2014
Type: Document
Source: TTRS

Alexander, Cruz, Vaillant
From the text ... 'Wildland fire research has done much to contribute to our current understanding of the behavior of crowning forest fires through laboratory experiments, outdoor experimental burning, numerical modeling, and wildfire case histories. Presumably, the future holds…
Year: 2014
Type: Document
Source: TTRS

Alexander, Cruz
From the text ... 'Wind-driven surface and crown fires in conifer forests typically adopt a roughly elliptical shape.Area burned is proportional to the rate of spread increase (following the transition to crowning) to the power of 2.'
Year: 2014
Type: Document
Source: TTRS