Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 26 - 50 of 5651

Kuzmina, Lim, Loiko, Pokrovsky
Extensive studies have been performed on wildfire impact on terrestrial and aquatic ecosystems in the taiga biome, however consequences of wildfires in the tundra biome remain poorly understood. In such a biome, permafrost peatlands occupy a sizable territory in the Northern…
Year: 2022
Type: Document
Source: FRAMES

Podschwit, Potter, Larkin
Data on wildfire growth are useful for multiple research purposes but are frequently unavailable and often have data quality problems. For these reasons, we developed a protocol for collecting daily burned area time series from the InciWeb website, Incident Management Situation…
Year: 2022
Type: Document
Source: FRAMES

Orland, Kirschbaum, Stanley
Wildfire is a global phenomenon that has dramatic effects on erosion and flood potential. On steep slopes, burned areas are more likely to experience significant overland flow during heavy rainfall leading to post fire debris flows (PFDFs). Previous work establishes methods for…
Year: 2022
Type: Document
Source: FRAMES

Paul, LeDuc, Lassiter, Moorhead, Noyes, Leibowitz
Wildfires have increased in frequency in many ecosystems, with implications for human health and the environment, including water quality. Increased fire frequency and urbanization also raise the prospect of fires burning into urban areas, mobilizing pollutants few have…
Year: 2022
Type: Document
Source: FRAMES

Volokitina, Korets, Sofronova
To study the vegetation affected by fires and to create databases useful for fire behavior prediction, three methodological approaches are used: (1) selective, (2) standard, and (3) individual-standard. The selective method consists of empirically studying the drying and…
Year: 2022
Type: Document
Source: FRAMES

Wildfires in America are becoming larger, more frequent, and more destructive, driven by climate change and existing land management practices. Many of these fires occur at the wildland-urban interface (WUI), areas where development and wildland areas overlap and which are…
Year: 2022
Type: Document
Source: FRAMES

Costes, Rodier, Masson, Lac, Rochoux
Coupled atmosphere-fire modeling is recognized as a relevant approach for the representation of the interaction between a wildland fire and local meteorology at landscape scales. The atmospheric model component used in the coupled system is based on several approximations, which…
Year: 2022
Type: Document
Source: FRAMES

Bui, Timmermann, Lee, Maloney, Li, Kim, Shuman, Lee, Wieder
Midlatitude stationary waves are relatively persistent large-scale longitudinal variations in atmospheric circulation. Although recent case studies have suggested a close connection between stationary waves and extreme weather events, little is known about the global-scale…
Year: 2022
Type: Document
Source: FRAMES

Nolan, Anderson, Poulter, Varner
Aim: Each year, wild and managed fires burn roughly 4 million km2 [~400 million hectares (Mha)] of savanna, forest, grassland and agricultural ecosystems. Land use and climate change have altered fire regimes throughout the world, with a trend toward higher-severity fires found…
Year: 2022
Type: Document
Source: FRAMES

Liang, Liu, Wang, Wang
Climate change is exacerbating the fire activity in Alaska, which exposes lives and properties to great risk, especially residents living in Wildland-Urban Interface (WUI). Therefore, it is crucial to characterize the spatial distribution and temporal dynamics of WUI and assess…
Year: 2022
Type: Document
Source: FRAMES

Miranda
The impact of smoke from wildland fires on human health is currently a serious concern due to the high levels of emitted gases and particulate matter that affect populations and firefighters. In recent decades, scientific developments regarding smoke dispersion and its impacts…
Year: 2022
Type: Document
Source: FRAMES

Feltrin, Smith, Adams, Thompson, Kolden, Yedinak, Johnson
Disruption of photosynthesis and carbon transport due to damage of the tree crown and stem cambial cells, respectively, can cause tree mortality. It has recently been proposed that fire-induced dysfunction of xylem plays an important role in tree mortality. Here, we…
Year: 2023
Type: Document
Source: FRAMES

Di Giuseppe
In 2021, the availability of a physical model for lightning density prediction at ECMWF led the development of data driven models to identify episodes conducive of fires. The machine-learning classifiers worked remarkably well reaching an overall accuracy up to 78%. Still,…
Year: 2022
Type: Document
Source: FRAMES

Fettig, Runyon, Homicz, James, Ulyshen
Purpose of Review Fire and insects are major disturbances in North American forests. We reviewed literature on the effects of fire on bark beetles, defoliators, and pollinators, as well as on the effects of bark beetle and defoliator epidemics on fuels and wildfires. Recent…
Year: 2022
Type: Document
Source: FRAMES

Liu, Zhang
In this article, we propose a mathematical model for insect outbreaks coupled with wildfire disturbances and an optimization model for finding suitable wildfire frequencies. We use a refined Holling II function as a model for the nonlinear response of fire frequency against…
Year: 2022
Type: Document
Source: FRAMES

The 3rd "International Conference on Fire Behavior and Risk" (ICFBR2022) took place in Alghero from May 3-6, 2022. ICBR2022 aims to involve scientists, researchers and policy makers whose activities are focused on different aspects of fires and their impact on ecosystems and…
Type: Project
Source: FRAMES

Schumaker, Watkins, Heinrichs
As fire frequency and severity grow throughout the world, scientists working across a range of disciplines will increasingly need to incorporate wildfire models into their research. However, fire simulators tend to be highly complex, time-consuming to learn, and difficult to…
Year: 2022
Type: Document
Source: FRAMES

Jones, Ayars, Parks, Chmura, Cushman, Sanderlin
Purpose of Review: Climate change will continue to alter spatial and temporal variation in fire characteristics, or pyrodiversity. The causes of pyrodiversity and its consequences for biological communities are emerging as a promising research area with great potential for…
Year: 2022
Type: Document
Source: FRAMES

Al-Bashiti, Naser
Whether triggered by natural or human-made events, wildfires are considered one of the most traumatic events to our community and environment. Thus, properly predicting wildfires continues to be an active area of research. This work showcases a statistical overview of the…
Year: 2022
Type: Document
Source: FRAMES

Zong, Tian
Most wildland-urban interface (WUI) areas in the world will face severe wildfire risks due to climate warming and rapid urbanization. Mitigating the damage caused by WUI fires has become a worthy topic for fire researchers and managers. In recent years, WUI fires have occurred…
Year: 2022
Type: Document
Source: FRAMES

Xu, Scholten, Hessilt, Liu, Veraverbeke
Overwintering fires are a historically rare phenomenon but may become more prevalent in the warming boreal region. Overwintering fires have been studied to a limited extent in boreal North America; however, their role and contribution to fire regimes in Siberia are still largely…
Year: 2022
Type: Document
Source: FRAMES

Grillakis, Voulgarakis, Rovithakis, Seiradakis, Koutroulis, Field, Kasoar, Papadopoulos, Lazaridis
Wildfire is an integral part of the Earth system, but at the same time it can pose serious threats to human society and to certain types of terrestrial ecosystems. Meteorological conditions are a key driver of wildfire activity and extent, which led to the emergence of the use…
Year: 2022
Type: Document
Source: FRAMES

Juliano, Jiménez, Kosović, Eidhammer, Thompson, Berg, Fast, Motley, Polidori
The 2020 wildfire season (May through December) in the United States was exceptionally active, with the National Interagency Fire Center reporting over 10 million acres (40,000 km2) burned. During the September 2020 wildfire events, large concentrations of smoke particulates…
Year: 2022
Type: Document
Source: FRAMES

Bousquet, Mialon, Rodriguez-Fernandez, Mermoz, Kerr
Anthropogenic climate change is now considered to be one of the main factors causing an increase in both the frequency and severity of wildfires. These fires are prone to release substantial quantities of CO2 into the atmosphere and to endanger natural ecosystems and…
Year: 2022
Type: Document
Source: FRAMES

Jorgenson, Brown, Hiemstra, Genet, Marcot, Murphy, Douglas
Alaska has diverse boreal ecosystems across heterogeneous landscapes driven by a wide range of biological and geomorphic processes associated with disturbance and successional patterns under a changing climate. To assess historical patterns and rates of change, we quantified the…
Year: 2022
Type: Document
Source: FRAMES