Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 76 - 100 of 4631

The annual national report of the Forest Health Monitoring (FHM) program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multistate regional perspective using a variety of sources, introduces new techniques for…
Year: 2022
Type: Document
Source: FRAMES

Vaillant
This seminar is part of the USFS Missoula Fire Lab Seminar Series. The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based application designed to make fuels treatment planning and analysis more efficient and effective. IFTDSS provides access to data and…
Year: 2020
Type: Media
Source: FRAMES

Yedinak
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Wildland fires occupy the biosphere as both an ecological process essential for maintaining species diversity and a hazard to human lives, infrastructure and activities. Fire managers’ ability to anticipate fire…
Year: 2020
Type: Media
Source: FRAMES

Ramírez
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Technosyva is a company of 50 professionals based in San Diego and in Leon, Spain. Since 1997 we focused on developing technology and applications for the wildland fire community, with a strong partnership with…
Year: 2021
Type: Media
Source: FRAMES

Makowiecki
This seminar is part of the USFS Missoula Fire Lab Seminar Series. In-situ measurements of combustion systems are challenging due to high temperatures, rapidly varying spatial properties, and limited physical and optical access. In biomass combustion these challenges are further…
Year: 2021
Type: Media
Source: FRAMES

Grabinski, Smith
In 2019, the Shovel Creek Fire grew rapidly and threatened nearby neighborhoods north of Fairbanks. The fire was started by lighting on June 21. After 39 days of burning, and $25 million spent on suppression the fire was put out and no homes or lives were lost. The resulting…
Year: 2022
Type: Media
Source: FRAMES

Simpson, Archibald, Osborne
Grasses fuel most fires on Earth and strongly influence local fire behaviour through traits that determine how flammable they are. Therefore, grass communities that differ in their species and trait compositions give rise to significant spatial variation in savanna fire regimes…
Year: 2022
Type: Document
Source: FRAMES

Camera captures video and temperature as a high-intensity crown fire rolls through. From the International Crown Fire Modeling Experiments in the Northwest Territories.
Year: 2000
Type: Media
Source: FRAMES

An overview of the International Crown Fire Modeling Experiments in Canada's Northwest Territories.
Year: 1997
Type: Media
Source: FRAMES

Video about the 1982 Porter Lake experimental burning.
Year: 1982
Type: Media
Source: FRAMES

Alexander
During 2021 the Canadian Forest Service celebrated the 50th anniversary of the operation of the Northern Forestry Centre (NoFC) in Edmonton, Alberta. As part of the celebration, NoFC retirees volunteered to make virtual presentations (roughly an hour in duration, giving time for…
Year: 2021
Type: Media
Source: FRAMES

Fazeli, Jolly, Blunck
Wildland fires impact ecosystems and communities worldwide. Many wildfires burn in living or a mixture of living and senescent vegetation. Therefore, it is necessary to understand the burning behavior of living fuels, in contrast to just dead or dried fuels, to more effectively…
Year: 2022
Type: Document
Source: FRAMES

Richter, Bathras, Barbetta Duarte, Gollner
Fires occurring at the wildland-urban interface (WUI) have rapidly increased in frequency and severity over the past few decades. As a result of these extreme fires, multiple communities, including thousands of structures, are destroyed every year. The majority of these losses…
Year: 2022
Type: Document
Source: FRAMES

Weise, Hao, Baker, Princevac, Aminfar, Palarea‐Albaladejo, Ottmar, Hudak, Restaino, O'Brien
Composition of pyrolysis gases for wildland fuels is often determined using ground samples heated in non-oxidising environments. Results are applied to wildland fires where fuels change spatially and temporally, resulting in variable fire behaviour with variable heating. Though…
Year: 2022
Type: Document
Source: FRAMES

Cunliffe, Anderson, Boschetti, Brazier, Graham, Myers-Smith, Astor, Boer, Calvo, Clark, Cramer, Encinas-Lara, Escarzaga, Fernández-Guisuraga, Fisher, Gdulová, Gillespie, Griebel, Hanan, Hanggito, Haselberger, Havrilla, Heilman, Ji, Karl, Kirchhoff, Kraushaar, Lyons, Marzolff, Mauritz, McIntire, Metzen, Méndez-Barroso, Power, Prošek, Sanz-Ablanedo, Sauer, Schulze-Brüninghoff, Šímová, Sitch, Smit, Steele, Suárez-Seoane, Vargas, Villarreal, Visser, Wachendorf, Wirnsberger, Wojcikiewicz
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass…
Year: 2022
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Sample, Thode, Peterson, Gallagher, Flatley, Friggens, Evans, Loehman, Hedwall, Brandt, Janowiak, Swanston
As the effects of climate change accumulate and intensify, resource managers juggle existing goals and new mandates to operationalize adaptation. Fire managers contend with the direct effects of climate change on resources in addition to climate-induced disruptions to fire…
Year: 2022
Type: Document
Source: FRAMES

McGowan-Stinski, Charney, Kobziar, Wickman, Pitrolo
This is the 3rd panel discussion in Season 2 of the Fueling Collaboration series. Moderator Jack McGowan-Stinski (Lake States Fire Science Consortium) discusses all things smoke. What is it? What are the messages we should be communicating? What are the tools that can help us…
Year: 2022
Type: Media
Source: FRAMES

Noble, Ernstrom
Part of the Science You Can Use Spring 2022 Webinar Series sponsored by the Rocky Mountain Research Station IFTDSS is becoming a go to tool for fuels planning across interagency partners. With its all access web-based approach, IFTDSS makes fuels management planning accessible…
Year: 2022
Type: Media
Source: FRAMES

Stephens, Powers, Robertson, Spearing, Collier, Tich, Smith
When a wildfire strikes, it impacts entire communities. Yet it can be challenging to get communities to take the lead in becoming more prepared, and thus build lasting resilience. Guided by theoretical preparedness models, and using a case study design, this study examines the…
Year: 2023
Type: Document
Source: FRAMES

Grzesik, Hollingsworth, Ruess, Turetsky
Black spruce forest communities in boreal Alaska have undergone self-replacement succession following low to moderate severity fires for thousands of years. However, recent intensification of interior Alaska’s fire regime, particularly deeper burning of the soil organic layer,…
Year: 2022
Type: Document
Source: FRAMES

Becker, Keefe
Mobile technologies are rapidly advancing the field of forest operations and providing opportunities to quantify management tasks in new ways through increased digitalization. For instance, devices equipped with global navigation satellite system and radio frequency transmission…
Year: 2022
Type: Document
Source: FRAMES

[from the text] Under this strategy, the Forest Service will work with partners to engineer a paradigm shift by focusing fuels and forest health treatments more strategically and at the scale of the problem, using the best available science as the guide. At the Forest Service,…
Year: 2022
Type: Document
Source: FRAMES

Hanan, Kennedy, Ren, Johnson, Smith
Climate change has lengthened wildfire seasons and transformed fire regimes throughout the world. Thus, capturing fuel and fire dynamics is critical for projecting Earth system processes in warmer and drier future. Recent advances in fire regime modeling have linked land surface…
Year: 2022
Type: Document
Source: FRAMES