Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 21 of 21

Guertin, Goodrich, Burns, Sheppard, Patel, Clifford, Unkrich, Kepner, Levick
Functionality has been incorporated into the Automated Geospatial Watershed Assessment Tool (AGWA) to assess the impacts of wildland fire on runoff and erosion. AGWA (https://www.epa.gov/water-research/automated-geospatial-watershed-assess... or www.tucson.ars.ag.gov/agwa) is a…
Year: 2019
Type: Document
Source: FRAMES

Chipman, Hu
Novel fire regimes are expected in many boreal regions, and it is unclear how biogeochemical cycles will respond. We leverage fire and vegetation records from a highly flammable ecoregion in Alaska and present new lake-sediment analyses to examine biogeochemical responses to…
Year: 2019
Type: Document
Source: FRAMES

Smith, Finch, Hawksworth
Despite widespread efforts to avert wildfire by reducing the density of flammable vegetation, little is known about the effects of this practice on the reproductive biology of forest birds. We examined nest-site selection and nest survival of the Black-chinned Hummingbird (…
Year: 2009
Type: Document
Source: TTRS

Cyr, Gauthier, Bergeron, Carcaillet
Fire is fundamental to the natural dynamics of the North American boreal forest. It is therefore often suggested that the impacts of anthropogenic disturbances (e.g. logging) on a managed landscape are attenuated if the patterns and processes created by these events resemble…
Year: 2009
Type: Document
Source: TTRS

Kardynal, Hobson, Van Wilgenburg, Morissette
Forest harvesting strategies that approximate natural disturbances have been proposed as a means of maintaining natural species' diversity and richness in the boreal forests of North America. Natural disturbances impact shoreline forests and upland areas at similar rates.…
Year: 2009
Type: Document
Source: TTRS

Higuera, Brubaker, Anderson, Hu, Brown
We examined direct and indirect impacts of millennial-scale climate change on fire regimes in the south-central Brooks Range, Alaska, USA, using four lake sediment records and existing paleoclimate interpretations. New techniques were introduced to identify charcoal peaks semi-…
Year: 2009
Type: Document
Source: TTRS

Yi, McGuire, Harden, Kasischke, Manies, Hinzman, Liljedahl, Randerson, Liu, Romanovsky, Marchenko, Kim
Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play…
Year: 2009
Type: Document
Source: TTRS

Hallema, Kinoshita, Martin, Robinne, Galleguillos, McNulty, Sun, Singh, Mordecai, Moore
The changing role of fire in forest landscapes shows that strategic forest management is necessary to safeguard urban water supplies.
Year: 2019
Type: Document
Source: FRAMES

Harper, Santín, Doerr, Froyd, Albini, Otero, Viñas, Pérez-Fernández
It is well established in the world’s fire-prone regions that wildfires can considerably change the hydrological dynamics of freshwater catchments. Limited research, however, has focused on the potential impacts of wildfire ash toxicity on aquatic biota. Here, we assess the…
Year: 2019
Type: Document
Source: FRAMES

Rhoades, Nunes, Silins, Doerr
This short paper provides the framework and introduction to this special issue of International Journal of Wildland Fire. Its eight papers were selected from those presented at two consecutive conferences held in 2018 in Europe and the USA that focussed on the impacts of…
Year: 2019
Type: Document
Source: FRAMES

Steblein, Miller
Wildland fire characteristics, such as area burned, number of large fires, burn intensity, and fire season duration, have increased steadily over the past 30 years, resulting in substantial increases in the costs of suppressing fires and managing damages from wildland fire…
Year: 2019
Type: Document
Source: FRAMES

Hohner, Summers, Rosario-Ortiz
Wildfires can abruptly transform forests, char vegetation and soils, and create an environment susceptible to postfire erosion and runoff to nearby surface waters serving as potable water supplies. The rising trend in wildfire activity increases the risk to source waters, while…
Year: 2019
Type: Document
Source: FRAMES

Hohner, Rhoades, Wilkerson, Rosario-Ortiz
Wildfires are a natural part of most forest ecosystems, but due to changing climatic and environmental conditions, they have become larger, more severe, and potentially more damaging. Forested watersheds vulnerable to wildfire serve as drinking water supplies for many urban and…
Year: 2019
Type: Document
Source: FRAMES

Carey, Abbott, Rocha
Rapid climate change at high latitudes is projected to increase wildfire extent in tundra ecosystems by up to five‐fold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2) cycling by restructuring surface vegetation and by deepening the seasonally‐…
Year: 2019
Type: Document
Source: FRAMES

Baghdikian
The purpose of this document is to outline the U.S. Environmental Protection Agency’s (EPA’s) wildland fire priorities and coordinate the EPA Office of Research and Development’s (ORD’s) wildland-fire-related research across multiple National Research Programs (NRPs) to be…
Year: 2019
Type: Document
Source: FRAMES

Betts, Jones
With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales,…
Year: 2009
Type: Document
Source: FRAMES

Marchand, Prairie, Del Giorgio
Natural fires annually decimate up to 1% of the forested area in the boreal region of Quebec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate…
Year: 2009
Type: Document
Source: TTRS

Wieder, Scott, Kamminga, Vile, Vitt, Bone, Xu, Benscoter, Bhatti
Boreal peatland ecosystems occupy about 3.5 million km2 of the earth's land surface and store between 250 and 455 Pg of carbon (C) as peat. While northern hemisphere boreal peatlands have functioned as net sinks for atmospheric C since the most recent deglaciation, natural and…
Year: 2009
Type: Document
Source: TTRS

Norris, Quideau, Bhatti, Wasylishen, MacKenzie
Boreal forest soils represent a considerable reservoir of carbon on a global basis. The objective of this study was to compare the response of soil organic carbon (OC) to disturbance along two jack pine (Pinus banksiana Lamb.) chronosequences of either fire or harvest origin.…
Year: 2009
Type: Document
Source: TTRS

Betts, Jones
With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales,…
Year: 2009
Type: Document
Source: TTRS

Okin, Parsons, Herrick, Bestelmeyer, Peters, Fredrickson
Arid and semiarid regions cover more than 40% of Earths land surface. Desertification, or broadscale land degradation in drylands, is a major environmental hazard facing inhabitants of the world's deserts as well as an important component of global change. There is no unifying…
Year: 2009
Type: Document
Source: TTRS