Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 201 - 225 of 4777

Hu, Wang, Lu, Gui, Wan
Soil microorganisms are a fundamental component of ecosystems and mediate biogeochemical cycles and ecosystem productivity. The frequency and extremity of fire weather is expected to increase under global warming; however, postfire soil microorganisms' patterns and trends remain…
Year: 2023
Type: Document
Source: FRAMES

Lin, Zhang, Huang, Feng, Chen
In this paper, a solution based on an improved particle swarm algorithm is proposed for the path planning problem without a road network in forest fire rescue scenarios. The algorithm adopts an adaptive inertia weight and a dynamically updated learning factor strategy to enhance…
Year: 2023
Type: Document
Source: FRAMES

Bressan, Chiri
The paper studies a dynamic blocking problem, motivated by a model of optimal fire confinement. While the fire can expand with unit speed in all directions, barriers are constructed in real time. An optimal strategy is sought, minimizing the total value of the burned region,…
Year: 2022
Type: Document
Source: FRAMES

Sierra-Hernández, Beaudon, Porter, Mosley-Thompson, Thompson
Wildfires emit large quantities of particles that affect Earth’s climate and human health. Black carbon (BC), commonly known as soot, is directly emitted to the atmosphere by wildfires and other processes and can be transported and deposited in remote regions including high-…
Year: 2022
Type: Document
Source: FRAMES

This edited volume presents original scientific research and knowledge synthesis covering the past, present, and potential future fire ecology of major US forest types, with implications for forest management in a changing climate. The editors and authors highlight broad…
Year: 2021
Type: Document
Source: FRAMES

Cobian-Iñiguez, Richter, Camignani, Liveretou, Xiong, Stephens, Finney, Gollner, Fernandez-Pello
The current study presents a series of experiments investigating the smoldering behavior of woody fuel arrays at various porosities under the influence of wind. Wildland fuels are simulated using wooden cribs burned inside a bench scale wind tunnel. Smoldering behavior was…
Year: 2022
Type: Document
Source: FRAMES

McAllister
The burning rate of wildland fuels is a poorly understood yet key fire behavior metric. Previous work has utilized wood cribs; however, it has not yet been addressed whether the burning behavior of a crib, an axisymmetric fire, can be representative of a line fire, a typical…
Year: 2022
Type: Document
Source: FRAMES

Cohen, Finney
The effects of radiation and convection in determining the heating that leads to ignition of fuel particles were explored using experiments with spreading laboratory fires and a numerical fuel particle heating model. As a follow-on to “Fuel Particle Heat Transfer, Part 1” (this…
Year: 2022
Type: Document
Source: FRAMES

Cohen, Finney
Wildfire spread requires fuel particles heated to ignition but the roles of radiation and convection heat transfer have not before been examined in detail. This paper reports on laboratory experiments and numerical modeling of wood particle response when subjected to a fixed…
Year: 2022
Type: Document
Source: FRAMES

McWethy
This seminar is part of Pennsylvania State University's Earth and Environmental Systems Institute's Fall 2021 EarthTalks Series: Fire in the Earth System(link is external). Fires burn in all terrestrial ecosystems on the globe, and wildfires are getting larger, more destructive…
Year: 2021
Type: Media
Source: FRAMES

McCarty
Fire activity and severity is increasing in the high northern latitudes, including burning landscapes long thought to be "fire resistant." Across the Pan-Arctic, smoke impacts from lengthening fire seasons in the boreal and the Arctic mean new public health challenges, as well…
Year: 2021
Type: Media
Source: FRAMES

Bacciu, Sirca, Spano
Fire risk management is at a crossroads. The last three fire seasons worldwide, dotted by extreme fire behavior and “megafire” events, highlighted the need for a shifting mentality towards a novel and integrated fire management framework, flexible, adaptive, and responsive to…
Year: 2022
Type: Document
Source: FRAMES

Alexander
Marty Alexander (Wild Rose Fire Behavior) and Luc Bibeau (FireSmart Specialist with Yukon Wildland Fire Management, Whitehorse, Yukon Territory) discuss the 3-m tree crown spacing guideline for the prevention of crowning wildfires. This podcast interview was hosted in…
Year: 2021
Type: Media
Source: FRAMES

McNamara, Mell
The advancement of three-dimensional, time-dependent fire behaviour models is best supported by publicly available, co-located, synchronised, quality-assured measures of pre-fire, active fire and post-fire conditions (i.e. integrated datasets). Currently, there is a lack of such…
Year: 2021
Type: Document
Source: FRAMES

Mann, Gaglioti, Jones, Miller
This project concerned tundra fires in Alaska and how climate-driven changes in fire regimes could impact Alaska’s Arctic ecosystems. We used remote sensing, dendrochronology, field vegetation surveys, and paleoclimate reconstructions to accomplish three goals: 1) to identify…
Year: 2021
Type: Document
Source: FRAMES

Harrison, Prentice, Bloomfield, Dong, Forkel, Forrest, Ningthoujam, Pellegrini, Shen, Baudena, Cardoso, Huss, Joshi, Oliveras, Pausas, Simpson
Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes – and their interactions with…
Year: 2021
Type: Document
Source: FRAMES

Bunty, Brandt, Flatley, Klein, Lane
Recording of the 3rd panel discussion in the Fueling Collaboration Series. Jenifer Bunty (Consortium of Appalachian Fire Managers & Scientists/Clemson University) moderates a panel of fire professionals and climate change specialists. They discuss how to incorporate climate…
Year: 2021
Type: Media
Source: FRAMES

Velasco Hererra, Soon, Pérez-Moreno, Velasco Herrera, Martell-Dubois, Rosique-de la Cruz, Fedorov, Cerdeira-Estrada, Bongelli, Zúñiga
The boreal forests of the Northern Hemisphere (i.e., covering the USA, Canada and Russia) are the grandest carbon sinks of the world. A significant increase in wildfires could cause disequilibrium in the Northern borealforest’s capacity as a carbon sink and cause significant…
Year: 2022
Type: Document
Source: FRAMES

This 15-minute video provides an overview of the FireWorks program and describes several of the activities.
Year: 2021
Type: Media
Source: FRAMES

Ellis, Bowman, Jain, Flannigan, Williamson
There is mounting concern that global wildfire activity is shifting in frequency, intensity and seasonality in response to climate change. Fuel moisture provides a powerful means of detecting changing fire potential. Here, we use global burned area and weather reanalysis data,…
Year: 2022
Type: Document
Source: FRAMES

Rapp, Wilson, Toman, Jolly
Background: Weather plays an integral role in fire management due to the direct and indirect effects it has on fire behavior. However, fire managers may not use all information available to them during the decision-making process, instead utilizing mental shortcuts that can bias…
Year: 2021
Type: Document
Source: FRAMES

Finney, McAllister, Grumstrup, Forthofer
Wildland fires have an irreplaceable role in sustaining many of our forests, shrublands and grasslands. They can be used as controlled burns or occur as free-burning wildfires, but can also be dangerous and destructive to fauna, human communities and natural resources. Through…
Year: 2021
Type: Document
Source: FRAMES

Khan, Moinuddin
The disruptions to wildland fires, such as firebreaks, roads and rivers, can limit the spread of wildfire propagating through surface or crown fire. A large forest can be separated into different zones by carefully constructing firebreaks through modification of vegetation in…
Year: 2021
Type: Document
Source: FRAMES

Boigné, Bennett, Wang, Ihme
This paper examines how X-ray Computed Tomography (XCT) can provide detailed and quantitative in-situ measurements in bench-scale fire experiments. The method is illustrated by employing a tabletop X-ray system to image the combustion of different biomass samples heated by…
Year: 2021
Type: Document
Source: FRAMES

Ciri, Garimella, Bernardoni, Bennett, Leonardi
A methodology to quantify uncertainty in wildfire forecast using coupled fire-atmosphere computational models is presented. In these models, an atmospheric solver is coupled with a fire-spread module. In order to maintain a low computational cost, the atmospheric simulation is…
Year: 2021
Type: Document
Source: FRAMES