Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 326 - 350 of 13155

Sargentis, Ioannidis, Bairaktaris, Frangedaki, Dimitriadis, Iliopoulou, Koutsoyiannis, Lagaros
There is a widespread perception that every year wildfires are intensifying on a global scale, something that is often used as an indicator of the adverse impacts of global warming. However, from the analysis of wildfires that have occurred in the US, Canada, and Mediterranean…
Year: 2022
Type: Document
Source: FRAMES

Becker, Keefe
Mobile technologies are rapidly advancing the field of forest operations and providing opportunities to quantify management tasks in new ways through increased digitalization. For instance, devices equipped with global navigation satellite system and radio frequency transmission…
Year: 2022
Type: Document
Source: FRAMES

[from the text] Under this strategy, the Forest Service will work with partners to engineer a paradigm shift by focusing fuels and forest health treatments more strategically and at the scale of the problem, using the best available science as the guide. At the Forest Service,…
Year: 2022
Type: Document
Source: FRAMES

Cheremisin, Marichev, Bochkovskii, Novikov, Romanchenko
The frequency of forest fires has recently increased. Combustion aerosol can enter the stratosphere, which can have noticeable consequences for the climate. In this work, we examine the transport of combustion aerosol into the stratosphere in summer 2019, when numerous wildfires…
Year: 2022
Type: Document
Source: FRAMES

Nimmo, Andersen, Archibald, Boer, Brotons, Parr, Tingley
[from the text] Fire is one of Earth's most potent agents of ecological change. This Special Issue comes in the wake of a series of extreme wildfires across the world, from the Amazon, to Siberia, California, Portugal, South Africa and eastern Australia (Duane et al., 2021).…
Year: 2022
Type: Document
Source: FRAMES

Hanan, Kennedy, Ren, Johnson, Smith
Climate change has lengthened wildfire seasons and transformed fire regimes throughout the world. Thus, capturing fuel and fire dynamics is critical for projecting Earth system processes in warmer and drier future. Recent advances in fire regime modeling have linked land surface…
Year: 2022
Type: Document
Source: FRAMES

Xu, Eisenhauer, Pellegrini, Wang, Certini, Guerra, Lai
Fire is a very common disturbance in terrestrial ecosystems and can give rise to significant effects on soil carbon (C) cycling and storage. Here, we conducted a global meta-analysis on the response of soil C cycling and storage across soil profiles (organic layer, 0-5 cm, 0-10…
Year: 2022
Type: Document
Source: FRAMES

Khan, Ghassemi
Growing wildfire-related transmission and distribution line outages have become a severe problem and a main concern for some utilities. This manuscript aims to integrate wildfire risk with the vulnerability of overhead lines through a probabilistic approach where a combined line…
Year: 2022
Type: Document
Source: FRAMES

Bailon-Ruiz, Bit-Monnot, Lacroix
This paper introduces a wildfire monitoring system based on a fleet of Unmanned Aerial Vehicles (UAVs) to provide firefighters with precise and up-to-date information about a propagating wildfire, so that they can devise efficient suppression actions. We present an approach to…
Year: 2022
Type: Document
Source: FRAMES

Le, Kim, Bae
Wildfires alter the composition and structure of ecosystems and result in huge economic costs. While future fires and ecosystems recovery might become increasingly challenging to manage under warming environment, further understanding of the main drivers of wildfires is…
Year: 2022
Type: Document
Source: FRAMES

York, Bhatt, Gargulinski, Grabinski, Jain, Soja, Thoman, Ziel
Despite the low annual temperatures and short growing seasons that are characteristic of high northern latitudes (HNL), wildland fire is the dominant ecological disturbance within the region's boreal forest, the world's largest terrestrial biome. The boreal forest, also known as…
Year: 2020
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service Resource Brief for the Arctic Inventory and Monitory Network which briefly summarizes the status of fire extent and frequency in ARCN parks and highlights the historic fire record (WFMI) & perimeter improvements.  The brief is written for a non-…
Year: 2021
Type: Document
Source: FRAMES

Croft, Wuttig, Mathieson, Montini
The quantity and intensity of wildfires have increased while permafrost in the interior of Alaska has become more vulnerable to thaw with warming climate conditions. The Trans-Alaska Pipeline System (TAPS) transports oil through a 1.2-m-diameter pipeline from Prudhoe Bay to…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service web article summarizes fire effects after the 2018 Andrew Creek fire in the Yukon-Charley Rivers National preserve including permafrost and watershed effects and also taking into account the long-term climate trends in the area.
Year: 2021
Type: Document
Source: FRAMES

Dodds, Rosales, Hailes, Sol, Coker, Quindry, Ruby
Wildland fire suppression presents a working environment that often exceeds an energy expenditure of 20 MJ/day, however maladaptive responses to adiposity and blood lipid profiles have been noted. We recruited wildland firefighters (WLFF), (n=100, 92 males, 8 females) from seven…
Year: 2020
Type: Document
Source: FRAMES

Hanes, Wotton, McFayden, Jurko
The Fire Weather Index (FWI) System codes and indices are commonly communicated and interpreted using a classification system (i.e., Low, Moderate, High, Extreme) by fire management agencies. Adjective classes were developed provincially shortly after the FWI System was…
Year: 2021
Type: Document
Source: FRAMES

Douglas, Jorgenson, Genet, Marcot, Nelsen
Climate change and intensification of disturbance regimes are increasing the vulnerability of interior Alaska Department of Defense (DoD) training ranges to widespread land cover and hydrologic changes. This is expected to have profound impacts on wildlife habitats, conservation…
Year: 2022
Type: Document
Source: FRAMES

Vachula, Liang, Sae-Lim, Xie
Recent fire events in Alaskan tundra ecosystems have been identified as harbingers of climate change and have caused reassessment of more traditional thinking about fire activity in this high-latitude biome. Although some work has demonstrated the novelty of these fires and…
Year: 2022
Type: Document
Source: FRAMES

Foster, Shuman, Rogers, Walker, Mack, Bourgeau-Chavez, Veraverbeke, Goetz
Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more…
Year: 2022
Type: Document
Source: FRAMES

Walker, Howard, Jean, Johnstone, Roland, Rogers, Schuur, Solvik, Mack
Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future…
Year: 2021
Type: Document
Source: FRAMES

Holzworth, Brundell, McCarthy, Jacobson, Rodger, Anderson
World Wide Lightning Location Network (WWLLN) data on global lightning are used to investigate the increase of total lightning strokes at Arctic latitudes. We use the summertime data from June, July, and August (JJA) which average >200,000 strokes each year above 65°N for the…
Year: 2021
Type: Document
Source: FRAMES

Yi, Chen, Moghaddam, Kimball, Jones, Jandt, Miller, Miller
We used full-polarimetric L-band and P-band synthetic aperture radar (SAR) data collected from the recent NASA Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign and Sentinel-1 C-band dual-polarization data to understand the sensitivity of radar backscatter…
Year: 2022
Type: Document
Source: FRAMES

Baltzer, Day, Walker, Greene, Mack, Alexander, Arseneault, Barnes, Bergeron, Boucher, Bourgeau-Chavez, Brown, Carrière, Howard, Gauthier, Parisien, Reid, Rogers, Roland, Sirois, Stehn, Thompson, Turetsky, Veraverbeke, Whitman, Yang, Johnstone
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of…
Year: 2021
Type: Document
Source: FRAMES

Hansen, Fitzsimmons, Olnes, Williams
Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and…
Year: 2021
Type: Document
Source: FRAMES

Essen, McCaffrey, Abrams, Paveglio
Numerous wildfire management agencies and institutions rely primarily on simple risk approaches to wildfire that focus on technical risk assessments that do not reflect the complexity of contemporary wildfire risk. This review paper argues that such insufficiently complex…
Year: 2023
Type: Document
Source: FRAMES