Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 401 - 425 of 13149

Schuur, Abbott, Commane, Ernakovich, Euskirchen, Hugelius, Grosse, Jones, Koven, Leshyk, Lawrence, Loranty, Mauritz, Olefeldt, Natali, Rodenhizer, Salmon, Schädel, Strauss, Treat, Turetsky
Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and…
Year: 2022
Type: Document
Source: FRAMES

Heal
[First paragraph] Firefighters are embarking on an ambitious experiment to stamp out blazes deep in the Alaskan wilderness as a way to avert carbon emissions in what experts say is a seismic shift in thinking in modern wildfire management that has traditionally focused only on…
Year: 2023
Type: Document
Source: FRAMES

Frumhoff, Phillips, Rogers
[Last paragraph of the opinion] We cannot stop global warming without dramatically reducing and ultimately eliminating fossil fuel emissions. But we also must keep boreal wildfire emissions in check. We ignore these wildfires and their accelerating climate impacts at our peril.…
Year: 2022
Type: Document
Source: FRAMES

Macander, Nelson, Nawrocki, Frost, Orndahl, Palm, Wells, Goetz
Widespread changes in the distribution and abundance of plant functional types (PFTs) are occurring in Arctic and boreal ecosystems due to the intensification of disturbances, such as fire, and climate-driven vegetation dynamics, such as tundra shrub expansion. To understand how…
Year: 2022
Type: Document
Source: FRAMES

Weiss, Marshall, Hayes, Nicolsky, Buma, Lucash
In interior Alaska, increasing wildfire activity associated with climate change is projected to continue, potentially altering regional forest composition. Conifers are emblematic of boreal forest; however, greater frequency and severity of wildfires has been found to favor…
Year: 2023
Type: Document
Source: FRAMES

Hahn, Michlig, Hansen, Manning, Augustinavicius
Previous studies have linked wildfires to a range of adverse mental health outcomes, but there has been limited research on the mental health impacts of wildfire in Alaska, an area undergoing rapid environmental change. We used a multi-level qualitative approach to identify…
Year: 2023
Type: Document
Source: FRAMES

Massey, Rogers, Berner, Cooperdock, Mack, Walker, Goetz
Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire. This shift in composition has the potential to generate biophysical cooling via increased land surface albedo. Here we use Landsat-derived maps of continuous tree…
Year: 2023
Type: Document
Source: FRAMES

Jandt
This Alaska Fire Science Consortium Researh Brief highlights an illustrated 75-page report "Advancing Wildfire Preparedness and Planning in Anchorage - Wildfire Exposure and Egress Study," authored by Dr. Jen Schmidt (UAA) and retired Alaska forester John See. The study was part…
Year: 2023
Type: Document
Source: FRAMES

Schmidt, See
Advancing Wildfire Preparedness and Planning takes an in-depth look at the dynamic factors that are impacting wildfire occurrence for the most populated geographic area in the 49th State of Alaska, the Municipality of Anchorage (MOA). The length and severity of recent fire…
Year: 2023
Type: Document
Source: FRAMES

Zhang, Douglas, Brodylo, Jorgenson
The permafrost-fire-climate system has been a hotspot in research for decades under a warming climate scenario. Surface vegetation plays a dominant role in protecting permafrost from summer warmth, thus, any alteration of vegetation structure, particularly following severe…
Year: 2023
Type: Document
Source: FRAMES

Andrada, Russell, Arevalo-Ramirez, Kuang, Kantor, Yandun
This paper presents a comprehensive forest mapping system using a customized drone payload equipped with Light Detection and Ranging (LiDAR), cameras, a Global Navigation Satellite System (GNSS), and Inertial Measurement Unit (IMU) sensors. The goal is to develop an efficient…
Year: 2023
Type: Document
Source: FRAMES

Loeffler, Brandt, Morgan, Jones
This annotated bibliography is a synthesis of information products available to land managers in the western United States regarding economic and financial aspects of forestry-based woody biomass removal, a component of fire hazard and/or fuel reduction treatments. This…
Year: 2010
Type: Document
Source: FRAMES

Shi, Levy, Remer, Mattoo, Arnold
Starting from point sources, wildfire smoke is important in the global aerosol system. The ability to characterize smoke near-source is key to modeling smoke dispersion and predicting air quality. With hemispheric views and 10-min refresh, imagers in Geostationary (GEO) orbit…
Year: 2024
Type: Document
Source: FRAMES

Alizadeha, Adamowski, Entekhabi
Land surface-atmosphere coupling and soil moisture memory are shown to combine into a distinct temporal pattern for wildfire incidents across the western United States. We investigate the dynamic interplay of observed soil moisture, vegetation water content, and atmospheric…
Year: 2024
Type: Document
Source: FRAMES

Crawford, Feldpausch, Marimon-Junior, de Oliveira, Belcher
Background: Charcoal increases in reflectance with increased intensity and/or duration of heating, and this has been proposed as a potential quantitative metric for fire severity. Because fuel properties also influence reflectance, relationships between heat exposure and…
Year: 2023
Type: Document
Source: FRAMES

Anthony, Applestein, Germino
Aims: Invasion by annual grasses (IAGs) and concomitant increases in wildfire are impacting many drylands globally, and an understanding of factors that contribute to or detract from community resistance to IAGs is needed to inform postfire restoration interventions. Prefire…
Year: 2023
Type: Document
Source: FRAMES

Lu, Liu, Ke, Zhang, Ma, Fan
The vertical distribution of biomass burning aerosol (BBA) is important in regulating their impacts on weather and climate. The plume-rise process affects the injection height of BBA and interacts with the air parcel lifting and cloud processes. However, these processes are not…
Year: 2024
Type: Document
Source: FRAMES

de Dios
Wildfires are a natural phenomenon in many terrestrial ecosystems. However, human activity is changing fire regimes. Some argue that the frequency of extreme wildfire events, characterized by very high intensities and rates of spread, may be increasing (Duane et al., 2021).…
Year: 2023
Type: Document
Source: FRAMES

Shirman, Shirman, Liu
Sub-micron particles are ubiquitous in the indoor environment, especially during wildfire smoke episodes, and have a higher impact on human health than larger particles. Conventional fibrous air filters installed in heating, ventilation, and air conditioning (HVAC) systems play…
Year: 2023
Type: Document
Source: FRAMES

Mankame, Shotorban
Spot fires created by wind–carrying firebrands are common in wildland–urban interface (WUI) fires. Firebrand deposition over cubic blocks in tandem and parallel arrangements representing simplified nearby small structures in WUI was studied. The flow turbulence was modeled by …
Year: 2023
Type: Document
Source: FRAMES

Nim, Morris, Tekasakul, Dejchanchaiwong
Peatland fires are one of the major global sources of atmospheric particles. Emission factors for fine (PM1 and PM2.5) and ultrafine (PM0.1) particles and particle-bound polycyclic aromatic hydrocarbons (PAHs) from plants in the peat swamp forest (PSF), including Melaleuca…
Year: 2023
Type: Document
Source: FRAMES

Wadhwani, Sutherland, Moinuddin, Huang
Background: Wildfire often shows complex dynamic behaviour due to the inherent nature of ambient conditions, vegetation and ignition patterns. Merging fire is one such dynamic behaviour that plays a critical role in the safety of structures and firefighters. Aim & method:…
Year: 2023
Type: Document
Source: FRAMES

Wang, Ihme, Linn, Chen, Yang, Sha, Clements, McDanold, Anderson
Background: Wildfires are becoming more severe, so we need improved tools to predict them over a wide range of conditions and scales. One approach towards this goal entails the use of coupled fire/atmosphere modelling tools. Although significant progress has been made in…
Year: 2023
Type: Document
Source: FRAMES

Su, Xie, Xu, Liu, Li
Background: Correct evaluation of safe heat exposure distance (SHED) in wildland fire environments improves the safety and efficiency of firefighting operation. However, there is a lack of standard test method for the SHED, let alone the influencing factors of the SHED. Aims:…
Year: 2023
Type: Document
Source: FRAMES

Granberg, Shen, Pearson, Verble
Background: Wildland firefighters have physically and psychologically demanding jobs that can result in social, economic and health-related stress. Previous studies have examined the physiological and physical effects of a career in wildland fire, but fewer studies have…
Year: 2023
Type: Document
Source: FRAMES