Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 61

Lutes
FOFEM - A First Order Fire Effects Model - is a computer program that was developed to meet needs of resource managers, planners, and analysts in predicting and planning for fire effects. Quantitative predictions of fire effects are needed for planning prescribed fires that best…
Year: 2016
Type: Document
Source: FRAMES

Pimont, Parsons, Rigolot, deColigny, Dupuy, Dreyfus, Linn
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose. We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a…
Year: 2016
Type: Document
Source: TTRS

Fischer, Spies, Steelman, Moseley, Johnson, Bailey, Ager, Bourgeron, Charnley, Collins, Kline, Leahy, Littell, Millington, Nielsen-Pincus, Olsen, Paveglio, Roos, Steen-Adams, Stevens, Vukomanovic, White, Bowman
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological 'pathology': that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales.…
Year: 2016
Type: Document
Source: TTRS

Drury, Rauscher, Banwell, Huang, Lavezzo
The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based software and data integration framework that organizes fire and fuels software applications into a single online application. IFTDSS is designed to make fuels treatment planning and analysis more…
Year: 2016
Type: Document
Source: TTRS

Balch, Nagy, Archibald, Bowman, Moritz, Roos, Scott, Williamson
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to…
Year: 2016
Type: Document
Source: TTRS

Steelman
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance…
Year: 2016
Type: Document
Source: TTRS

Waring, Coops
A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial…
Year: 2016
Type: Document
Source: TTRS

Wei, Rideout, Kirsch, Kernohan
Hazard fuel reduction and wildland fire preparedness programs are two important budgeting components in the US National Park Service strategic wildland fire planning. During the planning process, each national park independently conducts analysis to understand the benefits from…
Year: 2016
Type: Document
Source: FRAMES

Gallacher
Wildland fire behavior research in the last 100 years has largely focused on understanding the physical phenomena behind fire spread and on developing models that can predict fire behavior. Research advances in the areas of live-fuel combustion and combustion modeling have…
Year: 2016
Type: Document
Source: FRAMES

Weise, Fletcher, Mahalingam, McAllister, Shotorban, Jolly
Effect of moisture content and heat flux type on ignition of foliage from 10 live fuels was examined over the course of a year using two apparatuses: a flat-flame burner coupled with a radiant panel and a Forced Ignition and flame Spread Test (FIST) apparatus. Results of the…
Year: 2016
Type: Document
Source: FRAMES

Bova, Mell, Hoffman
Simulating an advancing fire front may be achieved within a Lagrangian or Eulerian framework. In the former, independently moving markers are connected to form a fire front, whereas in the latter, values representing the moving front are calculated at points within a fixed grid…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Smith, Kolden, Paveglio, Cochrane, Bowman, Moritz, Kliskey, Alessa, Hudak, Hoffman, Lutz, Queen, Goetz, Higuera, Boschetti, Flannigan, Yedinak, Watts, Strand, van Wagtendonk, Anderson, Stocks, Abatzoglou
Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process.…
Year: 2016
Type: Document
Source: FRAMES

Schoennagel, Morgan, Balch, Dennison, Harvey, Hutto, Krawchuk, Moritz, Rasker, Whitlock
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. In recent decades, state and federal policymakers, tribes, and others are confronting longer fire seasons (Jolly et al. 2015), more large fires (Dennison et al. 2014), a tripling of homes…
Year: 2016
Type: Document
Source: FRAMES

Schoennagel, Morgan, Balch, Dennison, Harvey, Hutto, Krawchuk, Moritz, Rasker, Whitlock
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. The four biggest fire seasons since 1960 have all occurred in the last 10 years, leading to fears of a ‘new normal’ for wildfire. Fire fighters and forest managers are overwhelmed, and it is…
Year: 2016
Type: Document
Source: FRAMES

Flannigan, Wotton, Marshall, de Groot, Johnstone, Jurko, Cantin
The objective of this paper is to examine the sensitivity of fuel moisture to changes in temperature and precipitation and explore the implications under a future climate. We use the Canadian Forest Fire Weather Index System components to represent the moisture content of fine…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Huang, Rein
Vegetation, wildfire and atmospheric oxygen on Earth have changed throughout geological times, and are dependent on each other, determining the evolution of ecosystems, the carbon cycle, and the climate, as found in the fossil record. Previous work in the literature has only…
Year: 2016
Type: Document
Source: FRAMES

Penman, Eriksen, Horsey, Bradstock
Wildfire has resulted in significant loss of property and lives. Residents can improve the probability of survival of structures and themselves by undertaking suitable preparation. Only a small proportion of residents adequately prepare for wildfire with monetary and time costs…
Year: 2016
Type: Document
Source: FRAMES

Leblon, SanMiguel-Ayanz, Bourgeau-Chavez, Kong
Wildfire is one of the most prominent disturbances in forest and grassland ecosystems and considered as a natural risk. Although wildfires maintain ecosystem health and diversity by regulating plant succession and fuel accumulation, controlling age, structure and species…
Year: 2016
Type: Document
Source: FRAMES

Jolly, Brenner, Long
Fine dead fuel moisture content (FMC) is a critical factor in fire behavior. As 1-hour fuels (needles, grass, leaves) dry out, flame length, rate of spread, fire intensity, and probability of ignition from embers increase. With grassy fuels (fuel models 1, 2, 3), a 5% decrease…
Year: 2016
Type: Document
Source: FRAMES

Taylor, Alexander
The Canadian Forest Fire Behavior Prediction (FBP) System is a systematic method for assessing wildland fire behavior potential. This field guide provides a simplified version of the system, presented in tabular format. It was prepared to assist field staff in making first…
Year: 2016
Type: Document
Source: FRAMES

Santín, Doerr
Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Belcher
Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires.…
Year: 2016
Type: Document
Source: FRAMES

Reeves
The escalating awareness of non-forested landscapes and realization that more emphasis is needed for an all lands approach to management increasingly requires timely information to improve management effectiveness. The Forest Vegetation Simulator (FVS) has been used in a large…
Year: 2016
Type: Document
Source: FRAMES

Helmbrecht, Blankenship
The LANDFIRE Program provides 'wall-to-wall' geospatial data of vegetation, wildland fuel, fire regime, disturbance, and topographic characteristics for the United States (Rollins 2009). LANDFIRE data are often an excellent choice for wildland fire and land management planning…
Year: 2016
Type: Document
Source: FRAMES

Parsons, Wells, Pimont, Jolly, Linn, Mell
The STANDFIRE project was funded by the JFSP to develop a prototype modeling system that could link widely available fuels data from FFE-FVS to physics-based fire models, providing an alternative approach for calculating fire behavior at stand scales. The objectives of the…
Year: 2016
Type: Document
Source: FRAMES