Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 56

Vaillant
This seminar is part of the USFS Missoula Fire Lab Seminar Series. The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based application designed to make fuels treatment planning and analysis more efficient and effective. IFTDSS provides access to data and…
Year: 2020
Type: Media
Source: FRAMES

Potter
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Some fires are big, but others are reach totally stunningly sizes, really “wow, that’s big.” What drives those fires to become so large, while other fires in seemingly similar conditions do not? I will present…
Year: 2020
Type: Media
Source: FRAMES

Poujol, Prein, Newman
Convective storms produce heavier downpours and become more intense with climate change. Such changes could be even amplified in high-latitudes since the Arctic is warming faster than any other region in the world and subsequently moistening. However, little attention has been…
Year: 2020
Type: Document
Source: FRAMES

Bendick, Hoylman
A topological data analysis (TDA) of 200,000 U.S. wildfires larger than 5 acres indicates that events with the largest final burned areas are associated with systematically low fuel moistures, low precipitation, and high vapor pressure deficits in the 30 days prior to the fire…
Year: 2020
Type: Document
Source: FRAMES

Vitolo, Di Giuseppe, Barnard, SanMiguel-Ayanz, Libertà, Krzeminski
Forest fires are an integral part of the natural Earth system dynamics, however they are becoming more devastating and less predictable as anthropogenic climate change exacerbates their impacts. In order to advance fire science, fire danger reanalysis products can be used as…
Year: 2020
Type: Document
Source: FRAMES

Walker, Rogers, Veraverbeke, Johnstone, Baltzer, Barrett, Bourgeau-Chavez, Day, de Groot, Dieleman, Goetz, Hoy, Jenkins, Kane, Parisien, Potter, Schuur, Turetsky, Whitman, Mack
Carbon (C) emissions from wildfires are a key terrestrial–atmosphere interaction that influences global atmospheric composition and climate. Positive feedbacks between climate warming and boreal wildfires are predicted based on top-down controls of fire weather and climate, but…
Year: 2020
Type: Document
Source: FRAMES

Horel, Crosman, Kochanski, Ziel
This study evaluated the ability of the High Resolution Rapid Refresh (HRRR) modeling system to forecast the characteristics of mesoscale atmospheric boundaries arising from thunderstorm outflows, gust fronts, and downburst winds (referred collectively as convective outflows)…
Year: 2020
Type: Document
Source: FRAMES

Anderson
This webinar to the NWCG Smoke Committee describes experimental tools developed for smoke management including higher resolution 7-day forecasts. Presented by Bret Anderson, who works for the National USDA Forest Service Air program and develops tools for wildfire smoke…
Year: 2020
Type: Media
Source: FRAMES

Kelly, Giljohann, Duane, Aquilué, Archibald, Batllori, Bennett, Buckland, Canelles, Clarke, Fortin, Hermoso, Herrando, Keane, Lake, McCarthy, Morán-Ordoñez, Parr, Pausas, Penman, Regos, Rumpff, Santos, Smith, Syphard, Tingley, Brotons
Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening…
Year: 2020
Type: Document
Source: FRAMES

Lindley, Ziel, Teske, Jolly, Law
The Fire Environment Continuing Education SubCommittee presents the 2020 Fall Fire Environment Post Season Lessons Learned Webinar Topics will include: Satellite-derived data WildfireSAFE Tips for Remote fire analysis assignments
Year: 2020
Type: Media
Source: FRAMES

Schullery
From introduction: The Greater Yellowstone Area (GYA) fires of 1988 were, in the words of National Park Service (NPS) publications, the most significant ecological event in the history of the national parks (NPS 1988). Their political consequences may be as far-reaching as their…
Year: 1989
Type: Document
Source: TTRS

McCleese
[no description entered]
Year: 1989
Type: Document
Source: TTRS

Stocks, Lawson, Alexander, Van Wagner, McAlpine, Lynham, Dube
Forest fire danger rating research in Canada was initiated by the federal government in 1925. Five different fire danger rating systems have been developed since that time, each with increasing universal applicability across Canada. The approach has been to build on previous…
Year: 1989
Type: Document
Source: TTRS

Johnson, Woodward, Titus
[no description entered]
Year: 1989
Type: Document
Source: TTRS

Payette, Morneau, Sirois, Desponts
The recent fire history of northern Quebec biomes (54 000 km2), including the northern Boreal Forest, the southern and northern Forest—Tundra, and the Shrub Tundra, was documented by examining size and dates of 20th century wildfires using tree ring techniques. Results showed…
Year: 1989
Type: Document
Source: TTRS

Chrosciewicz
[no description entered]
Year: 1989
Type: Document
Source: TTRS

Hartigan
[no description entered]
Year: 1989
Type: Document
Source: TTRS

Hirsch
[no description entered]
Year: 1989
Type: Document
Source: TTRS

Romme, Despain
[no description entered]
Year: 1989
Type: Document
Source: TTRS

Martell, Bevilacqua, Stocks
[no description entered]
Year: 1989
Type: Document
Source: TTRS

A tool that is part of the Global Wildfire Information System (GWIS) providing fire danger forecast up to 10 days in advance, 1-day lightning forecast and near-real time information on active fires, burnt areas and emissions worldwide.
Year: 2020
Type: Tool
Source: FRAMES

Nicholson, Egan
Natural hazards are naturally occurring physical events that can impact human welfare both directly and indirectly, via shocks to ecosystems and the services they provide. Animal‐mediated pollination is critical for sustaining agricultural economies and biodiversity, yet stands…
Year: 2020
Type: Document
Source: FRAMES

Hiers, O'Brien, Varner, Butler, Dickinson, Furman, Gallagher, Godwin, Goodrick, Hood, Hudak, Kobziar, Linn, Loudermilk, McCaffrey, Robertson, Rowell, Skowronski, Watts, Yedinak
The realm of wildland fire science encompasses both wild and prescribed fires. Most of the research in the broader field has focused on wildfires, however, despite the prevalence of prescribed fires and demonstrated need for science to guide its application. We argue that…
Year: 2020
Type: Document
Source: FRAMES

Jolly
Matt Jolly, Research Ecologist (USDA Forest Service Rocky Mountain Research Station) will present the structure and function of the current version of the US National Fire Danger Rating System, NFDRS2016. He will show how this system can be used to assess seasonal variations in…
Year: 2020
Type: Media
Source: FRAMES

Butler, Quarles, Standohar-Alfano, Morrison, Jimenez, Sopko, Wold, Bradshaw, Atwood, Landon, O'Brien, Hornsby, Wagenbrenner, Page
The relationship between wildland fire spread rate and wind has been a topic of study for over a century, but few laboratory studies report measurements in controlled winds exceeding 5 m s−1. In this study, measurements of fire rate of spread, flame residence time and energy…
Year: 2020
Type: Document
Source: FRAMES