Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 99

Lutes
FOFEM - A First Order Fire Effects Model - is a computer program that was developed to meet needs of resource managers, planners, and analysts in predicting and planning for fire effects. Quantitative predictions of fire effects are needed for planning prescribed fires that best…
Year: 2016
Type: Document
Source: FRAMES

Katuwal, Calkin, Hand
This study examines the production and efficiency of wildland fire suppression effort We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency…
Year: 2016
Type: Document
Source: TTRS

Fischer, Spies, Steelman, Moseley, Johnson, Bailey, Ager, Bourgeron, Charnley, Collins, Kline, Leahy, Littell, Millington, Nielsen-Pincus, Olsen, Paveglio, Roos, Steen-Adams, Stevens, Vukomanovic, White, Bowman
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological 'pathology': that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales.…
Year: 2016
Type: Document
Source: TTRS

Carroll, Paveglio
One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and…
Year: 2016
Type: Document
Source: TTRS

Balch, Nagy, Archibald, Bowman, Moritz, Roos, Scott, Williamson
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to…
Year: 2016
Type: Document
Source: TTRS

Baker, Woody, Tonnesen, Hutzell, Pye, Beaver, Pouliot, Pierce
Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions…
Year: 2016
Type: Document
Source: TTRS

Barn, Elliott, Allen, Kosatsky, Rideout, Henderson
Landscape fires can produce large quantities of smoke that degrade air quality in both remote and urban communities. Smoke from these fires is a complex mixture of fine particulate matter and gases, exposure to which is associated with increased respiratory and cardiovascular…
Year: 2016
Type: Document
Source: TTRS

Yuchi, Yao, Mclean, Stull, Paviovic, Davignon, Moran, Henderson
Fine particulate matter (PM2.5) generated by forest fires has been associated with a wide range of adverse health outcomes, including exacerbation of respiratory diseases and increased risk of mortality. Due to the unpredictable nature of forest fires, it is challenging for…
Year: 2016
Type: Document
Source: TTRS

Liu, Mickley, Sulprizio, Dominici, Yue, Ebisu, Anderson, Khan, Bravo, Bell
Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying…
Year: 2016
Type: Document
Source: TTRS

Yao, Eyamie, Henderson
Exposure to forest fire smoke (FFS) is associated with multiple adverse health effects, mostly respiratory. Findings for cardiovascular effects have been inconsistent, possibly related to the limitations of conventional methods to assess FFS exposure. In previous work, we…
Year: 2016
Type: Document
Source: TTRS

Tohidi, Kaye
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be…
Year: 2016
Type: Document
Source: TTRS

The Wildland Fire Library is a collection of long-term assessments, fire progressions, fire behavior reports, and other documents and resources to support fire modeling and assessment of long-duration fires. Each file is tied to some event with a location, a start date, and…
Year: 2016
Type: Website
Source: FRAMES

The National Cohesive Wildland Fire Management Strategy is a collaborative process to seek national, all-lands solutions to wildland fire management issues, focusing on three goals: Restore and maintain resilient landscapes, create fire adapted communities and, safe and…
Year: 2016
Type: Website
Source: FRAMES

Moseley, Nielsen-Pincus
Wildfire management requires significant institutional organization, a skilled workforce, facilities, and equipment. Sustaining this wildfire response capacity is critical to both agencies and fire-affected communities. Because fire suppression is seasonal and varies…
Year: 2016
Type: Project
Source: FRAMES

Hand, Thompson, Calkin
Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Kali
In forest firefighting, the longer the fires wait, the larger they grow and the longer they take to control. This study concerns the optimal deployment of single forest suppression processor of initial attack in the case of fires ignited simultaneously. The aim is to minimize…
Year: 2016
Type: Document
Source: FRAMES

Belval, Wei, Bevers
Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Smith, Kolden, Paveglio, Cochrane, Bowman, Moritz, Kliskey, Alessa, Hudak, Hoffman, Lutz, Queen, Goetz, Higuera, Boschetti, Flannigan, Yedinak, Watts, Strand, van Wagtendonk, Anderson, Stocks, Abatzoglou
Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process.…
Year: 2016
Type: Document
Source: FRAMES

[from the text] Our last research brief focused on managing smoke emissions using a decision support system in the wildland-urban interface (WUI). The authors of this system used a look-up table approach using smoke dispersion and fuel parameters to estimate the impact of smoke…
Year: 2016
Type: Document
Source: FRAMES

The Interagency Standards for Fire and Fire Aviation Operations, states, references, or supplements policy and provides program direction for Bureau of Land Management, U.S. Forest Service, U.S. Fish and Wildlife Service, and National Park Service fire and fire aviation program…
Year: 2016
Type: Document
Source: FRAMES

Alexander, Mack
Global change models predict that high-latitude boreal forests will become increasingly susceptible to fire activity as climate warms, possibly causing a positive feedback to warming through fire-driven emissions of CO2 into the atmosphere. However, fire-climate feedbacks depend…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Knorr, Jiang, Arneth
Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Schoennagel, Morgan, Balch, Dennison, Harvey, Hutto, Krawchuk, Moritz, Rasker, Whitlock
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. In recent decades, state and federal policymakers, tribes, and others are confronting longer fire seasons (Jolly et al. 2015), more large fires (Dennison et al. 2014), a tripling of homes…
Year: 2016
Type: Document
Source: FRAMES

Schoennagel, Morgan, Balch, Dennison, Harvey, Hutto, Krawchuk, Moritz, Rasker, Whitlock
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. The four biggest fire seasons since 1960 have all occurred in the last 10 years, leading to fears of a ‘new normal’ for wildfire. Fire fighters and forest managers are overwhelmed, and it is…
Year: 2016
Type: Document
Source: FRAMES

Santín, Doerr, Kane, Masiello, Ohlson, de la Rosa, Preston, Dittmar
The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters…
Year: 2016
Type: Document
Source: FRAMES