Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 176 - 200 of 3102

Larkin, Raffuse, Huang, Pavlovic, Lahm, Rao
Wildland fire emissions from both wildfires and prescribed fires represent a major component of overall U.S. emissions. Obtaining an accurate, time-resolved inventory of these emissions is important for many purposes, including to account for emissions of greenhouse gases and…
Year: 2020
Type: Document
Source: FRAMES

Lu, Zhang, Li, Cochrane, Ciren
Smoke from fires significantly influences climate, weather, and human health. Fire smoke is traditionally detected using an aerosol index calculated from spectral contrast changes. However, such methods usually miss thin smoke plumes. It also remains challenging to accurately…
Year: 2021
Type: Document
Source: FRAMES

Wiggins, Anderson, Brown, Campuzano-Jost, Chen, Crawford, Crosbie, Dibb, DiGangi, Diskin, Fenn, Gallo, Gargulinski, Guo, Hair, Halliday, Ichoku, Jimenez, Jordan, Katich, Nowak, Perring, Robinson, Sanchez, Schueneman, Schwarz, Shingler, Shook, Soja, Stockwell, Thornhill, Travis, Warneke, Winstead, Ziemba, Moore
Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach.…
Year: 2021
Type: Document
Source: FRAMES

Justice, Giglio, Korontzi, Owens, Morisette, Roy, Descloitres, Alleaume, Petitcolin, Kaufman
Fire products are now available from the Moderate Resolution Imaging Spectroradiometer (MODIS) including the only current global daily active fire product. This paper describes the algorithm, the products and the associated validation activities. High-resolution ASTER data,…
Year: 2002
Type: Document
Source: FRAMES

Harrison, Prentice, Bloomfield, Dong, Forkel, Forrest, Ningthoujam, Pellegrini, Shen, Baudena, Cardoso, Huss, Joshi, Oliveras, Pausas, Simpson
Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes – and their interactions with…
Year: 2021
Type: Document
Source: FRAMES

Baker
It is predicted that under a warming climate, wildfire frequency will likely increase. The increase in fire activity is hypothesized as a likely consequence of increased atmospheric CO2-driven climate warming having the potential to influence fire weather and increase ignition…
Year: 2022
Type: Document
Source: FRAMES

Velasco Hererra, Soon, Pérez-Moreno, Velasco Herrera, Martell-Dubois, Rosique-de la Cruz, Fedorov, Cerdeira-Estrada, Bongelli, Zúñiga
The boreal forests of the Northern Hemisphere (i.e., covering the USA, Canada and Russia) are the grandest carbon sinks of the world. A significant increase in wildfires could cause disequilibrium in the Northern borealforest’s capacity as a carbon sink and cause significant…
Year: 2022
Type: Document
Source: FRAMES

Palm, Peng, Hall, Ullmann, Campos, Weinheimer, Montzka, Tyndall, Permar, Hu, Flocke, Fischer, Thornton
Wildfire emissions affect downwind air quality and human health. Predictions of these impacts using models are limited by uncertainties in emissions and chemical evolution of smoke plumes. Using high-time-resolution aircraft measurements, we illustrate spatial variations that…
Year: 2021
Type: Document
Source: FRAMES

Redfern, Lundquist, Toon, Muñoz-Esparza, Bardeen
Large areal fires, such as those ignited following a nuclear detonation, can inject smoke into the upper troposphere and lower stratosphere. Detailed fire simulations allow for assessment of how local weather interacts with these fires and affects smoke lofting. In this study,…
Year: 2021
Type: Document
Source: FRAMES

In January 2020, the Wildland Fire Leadership Council (WFLC) requested that EPA, in collaboration with scientific staff in the U.S. Forest Service (USFS), the Department of the Interior (DOI) and the National Institute of Standards and Technology (NIST), conduct an assessment of…
Year: 2021
Type: Document
Source: FRAMES

Wooster, Roberts, Giglio, Roy, Freeborn, Boschetti, Justice, Ichoku, Schroeder, Davies, Smith, Setzer, Csiszar, Strydom, Frost, Zhang, Xu, de Jong, Johnston, Ellison, Vadrevu, McCarty, Tanpipat, Schmidt, SanMiguel-Ayanz
Highlights: A review of active fire remote sensing using EO satellites is presented. Different approaches for fire detection and characterization are compared and contrasted. Main satellite active fire products and their applications are summarised. Some key research topics for…
Year: 2021
Type: Document
Source: FRAMES

Williamson, Menounos
Over the past decade, western North America glaciers experienced strong mass loss. Regional mass loss during the ablation season is influenced by air temperature, but the importance of other factors such as changes in surface albedo remains uncertain. We examine changes in…
Year: 2021
Type: Document
Source: FRAMES

Southwell, Legge, Woinarski, Lindenmayer, Lavery, Wintle
Aims Reconnaissance surveys followed by monitoring are needed to assess the impact and response of biodiversity to wildfire. However, post-wildfire survey and monitoring design are challenging due to the infrequency and unpredictability of wildfire, an urgency to initiate…
Year: 2022
Type: Document
Source: FRAMES

Dev, Barnes, Kadir, Betha, Aggarwal
Residential areas are being increasingly impacted by wildfire smoke that causes hazardous local ambient air quality conditions. Poor outdoor air quality also exacerbates the quality of indoor air as smoke particles penetrate the building envelope or the heating, ventilation, and…
Year: 2022
Type: Document
Source: FRAMES

'Fire Research at the Science–Policy–Practitioner Interface' is a Section of the fully open access journal Fire. The main aim of the Section is to highlight research seeking to assess operational approaches to wildland fire management, and to facilitate the sharing of…
Type: Website
Source: FRAMES

Fire is an international, peer-reviewed, open access journal about the science, policy, and technology of fires and how they interact with communities and the environment, broadly defined, published quarterly online by MDPI. Fire serves as an international forum for diverse…
Type: Website
Source: FRAMES

Varner, Hiers, Wheeler, McGuire, Quinn-Davidson, Palmer, Fowler
Increased prescribed burning is needed to provide a diversity of public benefits, including wildfire hazard reduction, improved forest resilience, and biodiversity conservation. Though rare, escaped burns or significant smoke impacts may result in harm to individuals and…
Year: 2021
Type: Document
Source: FRAMES

Goolsby
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Theme: Life with Fire: Next Generation IT Fire Modeling Forest Service & Department of the Interior (Wildland Fire Management Research Development & Applications / Office of Wildland Fire) are excited to…
Year: 2021
Type: Media
Source: FRAMES

McCarty, Aalto, Paunu, Arnold, Eckhardt, Klimont, Fain, Evangeliou, Venäläinen, Tchebakova, Parfenova, Kupiainen, Soja, Huang
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing…
Year: 2021
Type: Document
Source: FRAMES

Wang, Baccini, Farina, Randerson, Friedl
Climate change is altering vegetation and disturbance dynamics in boreal ecosystems. However, the aggregate impact of these changes on boreal carbon budgets is not well understood. Here we combined multiple satellite datasets to estimate annual stocks and changes in aboveground…
Year: 2021
Type: Document
Source: FRAMES

Macander, Palm, Frost, Herriges, Nelson, Roland, Russell, Suitor, Bentzen, Joly, Goetz, Hebblewhite
Previous research indicates that the effects of climate warming, including shrub expansion and increased fire frequency may lead to declining lichen abundance in arctic tundra and northern alpine areas. Lichens are important forage for caribou (Rangifer tarandus), whose…
Year: 2020
Type: Document
Source: FRAMES

He, Chen, Jenkins, Loboda
Tundra ecosystems contain some of the largest stores of soil organic carbon among all biomes worldwide. Wildfire, the primary disturbance agent in Arctic tundra, is likely to impact soil properties in ways that enable carbon release and modify ecosystem functioning more broadly…
Year: 2021
Type: Document
Source: FRAMES

Palm
Caribou from studied Canada and Alaska herds avoided burned areas, especially in winter and at larger spatial and temporal scales.
Year: 2020
Type: Media
Source: FRAMES

Langford, Kumar, Hoffman
Wildfires are the dominant disturbance impacting many regions in Alaska and are expected to intensify due to climate change. Accurate tracking and quantification of wildfires are important for climate modeling and ecological studies in this region. Remote sensing platforms (e.g…
Year: 2018
Type: Document
Source: FRAMES

Holsinger, Parks, Saperstein, Loehman, Whitman, Barnes, Parisien
Fire severity is a key driver shaping the ecological structure and function of North American boreal ecosystems, a biome dominated by large, high-intensity wildfires. Satellite-derived burn severity maps have been an important tool in these remote landscapes for both fire and…
Year: 2022
Type: Document
Source: FRAMES