Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 78

de Groot, Goldammer, Keenan, Brady, Lynham, Justice, Csiszar, O'Loughlin
Wildland fires burn several hundred million hectares of vegetation every year, and increased fire activity has been reported in many global regions. Many of these fires have had serious negative impacts on human safety, health, regional economies, global climate change, and…
Year: 2006
Type: Document
Source: TTRS

Goulden, Winston, McMillan, Litvak, Read, Rocha, Elliot
We deployed a mesonet of year-round eddy covariance towers in boreal forest stands that last burned in ~1850, ~1930, 1964, 1981, 1989, 1998, and 2003 to understand how CO2 exchange and evapotranspiration change during secondary succession. We used MODIS imagery to establish that…
Year: 2006
Type: Document
Source: TTRS

Ali, Taylor, Inubushi
CO2 efflux from tropical peat swamp substrates was measured under three different land uses (selectively logged forest, recently burned and cleared forest, and agriculture) in Jambi Province, eastern Sumatra over a six-month period that incorporated parts of both the major wet…
Year: 2006
Type: Document
Source: TTRS

Woodall, Perry, Miles
A relative stand density assessment technique, using the mean specific gravity of all trees in a stand to predict its maximum stand density index (SDI) and subsequently its relative stand density (current SDI divided by maximum SDI), was used to estimate the relative density of…
Year: 2006
Type: Document
Source: TTRS

Ottmar, Brown, French, Larkin
This document presents the study plan for the Fire and Smoke Model Evaluation Experiment (FASMEE). FASMEE is a large-scale interagency effort to (1) identify the critical measurements necessary to improve operational wildland fire and smoke prediction systems, (2) collect…
Year: 2017
Type: Document
Source: FRAMES

Rueda, Godoy, Hawkins
Aim: Gymnosperms do not follow a latitudinal diversity gradient across the Northern Hemisphere but are influenced by geography at continental scales. Tolerance to physiological aridity is thought to be the main driver of this distribution, yet through evolutionary time conifers…
Year: 2017
Type: Document
Source: TTRS

Strader, Jandt, Jenkins, York, Ziel
Presented by Heidi Strader, Randi Jandt, Jenn Jenkins, Alison York and Robert Ziel. Optional webinar for AFSC remote sensing workshop presenters to introduce the Alaska fire management context. We will summarize the natural history of fire in the state, explain how fire…
Year: 2017
Type: Media
Source: FRAMES

Loehman, Saperstein, Miller, Hrobak, Loboda, Veraverbeke, Hoy
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Jenkins, Butteri, Miller, Slaughter, Ellicott, Heinrichs, Waigl
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Zhao
Wildfire is a major forest disturbance in the forests in northeastern China. Fires in this region have extraordinary environmental and social impacts because it’s location close to densely populated regions in China and other northeastern Asian countries. This study describes…
Year: 2017
Type: Media
Source: FRAMES

Liu
Wildland fire is a natural phenomenon and influential force of the Earth’s climate system. During the past decades, increased large wildland fire activities, longer wildland fire durations, and longer wildfire seasons in the United States have received more and more attention…
Year: 2017
Type: Media
Source: FRAMES

Stevens
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Ziel, Bulock, Wattenbarger, Weddle, Thompson, Bourgeau-Chavez, Leblon
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Loehman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Miller
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Barrett
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Whitman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Veraverbeke
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Loboda
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

van der Sluijs
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Andersen
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Seaman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

McCorkle
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Oliva
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Ziel
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES