Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 76 - 100 of 7053

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Doherty, Geary, Jolly, Macdonald, Miritis, Watchorn, Cherry, Conner, González, Legge, Ritchie, Stawski, Dickman
Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator–prey interactions is fragmented and has not…
Year: 2022
Type: Document
Source: FRAMES

Steketee, Rocha, Gough, Griffin, Klupar, An, Williamson, Rowe
Fire is an important ecological disturbance that can reset ecosystems and initiate changes in plant community composition, ecosystem biogeochemistry, and primary productivity. Since herbivores rely on primary producers for food, changes in vegetation may alter plant-herbivore…
Year: 2022
Type: Document
Source: FRAMES

Robinson, Barnett, Jones, Stanish, Parker
Quantifying the resilience of ecological communities to increasingly frequent and severe environmental disturbance, such as natural disasters, requires long-term and continuous observations and a research community that is itself resilient. Investigators must have reliable…
Year: 2022
Type: Document
Source: FRAMES

Grzesik, Hollingsworth, Ruess, Turetsky
Black spruce forest communities in boreal Alaska have undergone self-replacement succession following low to moderate severity fires for thousands of years. However, recent intensification of interior Alaska’s fire regime, particularly deeper burning of the soil organic layer,…
Year: 2022
Type: Document
Source: FRAMES

Nimmo, Andersen, Archibald, Boer, Brotons, Parr, Tingley
[from the text] Fire is one of Earth's most potent agents of ecological change. This Special Issue comes in the wake of a series of extreme wildfires across the world, from the Amazon, to Siberia, California, Portugal, South Africa and eastern Australia (Duane et al., 2021).…
Year: 2022
Type: Document
Source: FRAMES

Ballinger
Alaska’s central and eastern interior (CEI), including the greater Tanana Valley and Yukon Flats, has consistently been the most fire prone area of the state during the last two decades. Toward operational and research applications, several surface fire weather indicators have…
Year: 2022
Type: Media
Source: FRAMES

Littell, Trainor
Sarah Trainor & Jeremy Littell present at the 2021 Association for Fire Ecology Conference special session: The Nexus of Climate Change and Fire: Taking Science to Action Addressing the unprecedented challenges of climate change, wildland fire, and human land use requires…
Year: 2021
Type: Media
Source: FRAMES

Hrobak, Barnes
National Park Service Resource Brief for the Arctic Inventory and Monitory Network which briefly summarizes the status of fire extent and frequency in ARCN parks and highlights the historic fire record (WFMI) & perimeter improvements.  The brief is written for a non-…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service web article summarizes fire effects after the 2018 Andrew Creek fire in the Yukon-Charley Rivers National preserve including permafrost and watershed effects and also taking into account the long-term climate trends in the area.
Year: 2021
Type: Document
Source: FRAMES

Douglas, Jorgenson, Genet, Marcot, Nelsen
Climate change and intensification of disturbance regimes are increasing the vulnerability of interior Alaska Department of Defense (DoD) training ranges to widespread land cover and hydrologic changes. This is expected to have profound impacts on wildlife habitats, conservation…
Year: 2022
Type: Document
Source: FRAMES

Vachula, Liang, Sae-Lim, Xie
Recent fire events in Alaskan tundra ecosystems have been identified as harbingers of climate change and have caused reassessment of more traditional thinking about fire activity in this high-latitude biome. Although some work has demonstrated the novelty of these fires and…
Year: 2022
Type: Document
Source: FRAMES

Walker, Howard, Jean, Johnstone, Roland, Rogers, Schuur, Solvik, Mack
Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future…
Year: 2021
Type: Document
Source: FRAMES

Yi, Chen, Moghaddam, Kimball, Jones, Jandt, Miller, Miller
We used full-polarimetric L-band and P-band synthetic aperture radar (SAR) data collected from the recent NASA Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign and Sentinel-1 C-band dual-polarization data to understand the sensitivity of radar backscatter…
Year: 2022
Type: Document
Source: FRAMES

Baltzer, Day, Walker, Greene, Mack, Alexander, Arseneault, Barnes, Bergeron, Boucher, Bourgeau-Chavez, Brown, Carrière, Howard, Gauthier, Parisien, Reid, Rogers, Roland, Sirois, Stehn, Thompson, Turetsky, Veraverbeke, Whitman, Yang, Johnstone
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of…
Year: 2021
Type: Document
Source: FRAMES

Hansen, Fitzsimmons, Olnes, Williams
Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and…
Year: 2021
Type: Document
Source: FRAMES

Bowring, Jones, Ciais, Guenet, Abiven
Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy…
Year: 2022
Type: Document
Source: FRAMES

González, González-Trujillo, Muñoz, Armenteras
Fire is a natural agent with a paramount role in ecosystem functioning and biodiversity maintenance. Still, it can also act as a negative force against many ecosystems. Despite some knowledge of the interactions of fire and vegetation, there is no clear understanding of how…
Year: 2022
Type: Document
Source: FRAMES

Masrur, Taylor, Harris, Barnes, Petrov
Although the link between climate change and tundra fire activity is well-studied, we lack an understanding of how fire, vegetation, and topography interact to either amplify or dampen climatic effects on these tundra fires at Pan-Arctic scale. This study investigated the…
Year: 2022
Type: Document
Source: FRAMES

Palm, Suitor, Joly, Herriges, Kelly, Hervieux, Russell, Bentzen, Larter, Hebblewhite
Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help protect globally significant carbon reserves beneath permafrost…
Year: 2022
Type: Document
Source: FRAMES

Speck, Speck
Wildfires are unplanned conflagrations perceived as a threat by humans. However, fires are essential for the survival of fire-adapted plants. On the one hand, wildfires cause major damage worldwide, burning large areas of forests and landscapes, threatening towns and villages,…
Year: 2024
Type: Document
Source: FRAMES

Arrogante-Funes, Aguado, Chuvieco
Background: Fire is a natural disturbance that significantly impacts ecosystems and plays a crucial role in the distribution and preservation of biota worldwide. The effects of fires on bird diversity can be both positive, as they can create new habitats, and negative, as they…
Year: 2024
Type: Document
Source: FRAMES

Volkova, Fernández
Fire is an important component of many forest ecosystems, yet climate change is now modifying fire regimes all over the world, driving a need to understand the impact of fires on the physical and biological processes. In 2022, Elsevier launched a Special Collection that spanned…
Year: 2024
Type: Document
Source: FRAMES

Zhu, Xu, Jia
Wildfire is recognized as an increasing threat to the southern boreal forests and the permafrost beneath them, with less occurring over the cold continuous permafrost than before. However, we show that continuous permafrost was a major contribution to wildfire expansion in the…
Year: 2023
Type: Document
Source: FRAMES

Yoseph, Hoy, Elder, Ludwig, Thompson, Miller
Rapid warming in Arctic tundra may lead to drier soils in summer and greater lightning ignition rates, likely culminating in enhanced wildfire risk. Increased wildfire frequency and intensity leads to greater conversion of permafrost carbon to greenhouse gas emissions. Here, we…
Year: 2023
Type: Document
Source: FRAMES