Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 76 - 100 of 6913

Huang, Downey, Bakos
The occurrence of wildfires often results in significant fatalities. As wildfires are notorious for their high speed of spread, the ability to identify wildfire at its early stage is essential in quickly obtaining control of the fire and in reducing property loss and preventing…
Year: 2022
Type: Document
Source: FRAMES

Haghani, Kuligowski, Rajabifard, Kolden
Along with the increase in the frequency of disastrous wildfires and bushfires around the world during the recent decades, scholarly research efforts have also intensified in this domain. This work investigates divisions and trends of the domain of wildfire/bushfire research.…
Year: 2022
Type: Document
Source: FRAMES

Shi, Shi, Jiang, Liu
Fire is a major disturbance affecting plant communities in terrestrial ecosystems. Understanding fire effects on soil seed banks is critical in the context of altered global fire regimes. Through a systematic and quantitative review of the literature, we provide the first global…
Year: 2022
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Vazquez-Varela, Martínez-Navarro, Abad-González
Building fire-adaptive communities and fostering fire-resilient landscapes have become two of the main research strands of wildfire science that go beyond strictly biophysical viewpoints and call for the integration of complementary visions of landscapes and the communities…
Year: 2022
Type: Document
Source: FRAMES

Sample, Thode, Peterson, Gallagher, Flatley, Friggens, Evans, Loehman, Hedwall, Brandt, Janowiak, Swanston
As the effects of climate change accumulate and intensify, resource managers juggle existing goals and new mandates to operationalize adaptation. Fire managers contend with the direct effects of climate change on resources in addition to climate-induced disruptions to fire…
Year: 2022
Type: Document
Source: FRAMES

Grissino-Mayer
An increment borer is the primary tool used to collect samples for dendrochronological analyses. These are precision instruments and users should be trained in their proper use, care, and maintenance. In this paper, I describe the various parts of an increment borer and how to…
Year: 2003
Type: Document
Source: FRAMES

Grissino-Mayer
COFECHA is a computer program that assesses the quality of crossdating and measurement accuracy of tree-ring series. Written by Richard L. Holmes in 1982, the program has evolved into one of the most important and widely used in dendrochronology. It is important to note that…
Year: 2001
Type: Document
Source: FRAMES

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Doherty, Geary, Jolly, Macdonald, Miritis, Watchorn, Cherry, Conner, González, Legge, Ritchie, Stawski, Dickman
Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator–prey interactions is fragmented and has not…
Year: 2022
Type: Document
Source: FRAMES

Steketee, Rocha, Gough, Griffin, Klupar, An, Williamson, Rowe
Fire is an important ecological disturbance that can reset ecosystems and initiate changes in plant community composition, ecosystem biogeochemistry, and primary productivity. Since herbivores rely on primary producers for food, changes in vegetation may alter plant-herbivore…
Year: 2022
Type: Document
Source: FRAMES

Stonesifer
Part of the Science You Can Use Spring 2022 Webinar Series sponsored by the Rocky Mountain Research Station Aircraft are important fire management tools, but their use can bring substantial costs and associated risks. We developed the Aviation Use Summary (AUS), which is a…
Year: 2022
Type: Media
Source: FRAMES

Robinson, Barnett, Jones, Stanish, Parker
Quantifying the resilience of ecological communities to increasingly frequent and severe environmental disturbance, such as natural disasters, requires long-term and continuous observations and a research community that is itself resilient. Investigators must have reliable…
Year: 2022
Type: Document
Source: FRAMES

Grzesik, Hollingsworth, Ruess, Turetsky
Black spruce forest communities in boreal Alaska have undergone self-replacement succession following low to moderate severity fires for thousands of years. However, recent intensification of interior Alaska’s fire regime, particularly deeper burning of the soil organic layer,…
Year: 2022
Type: Document
Source: FRAMES

Nimmo, Andersen, Archibald, Boer, Brotons, Parr, Tingley
[from the text] Fire is one of Earth's most potent agents of ecological change. This Special Issue comes in the wake of a series of extreme wildfires across the world, from the Amazon, to Siberia, California, Portugal, South Africa and eastern Australia (Duane et al., 2021).…
Year: 2022
Type: Document
Source: FRAMES

Littell, Trainor
Sarah Trainor & Jeremy Littell present at the 2021 Association for Fire Ecology Conference special session: The Nexus of Climate Change and Fire: Taking Science to Action Addressing the unprecedented challenges of climate change, wildland fire, and human land use requires…
Year: 2021
Type: Media
Source: FRAMES

Hrobak, Barnes
National Park Service web article summarizes fire effects after the 2018 Andrew Creek fire in the Yukon-Charley Rivers National preserve including permafrost and watershed effects and also taking into account the long-term climate trends in the area.
Year: 2021
Type: Document
Source: FRAMES

Douglas, Jorgenson, Genet, Marcot, Nelsen
Climate change and intensification of disturbance regimes are increasing the vulnerability of interior Alaska Department of Defense (DoD) training ranges to widespread land cover and hydrologic changes. This is expected to have profound impacts on wildlife habitats, conservation…
Year: 2022
Type: Document
Source: FRAMES

Walker, Howard, Jean, Johnstone, Roland, Rogers, Schuur, Solvik, Mack
Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future…
Year: 2021
Type: Document
Source: FRAMES

Yi, Chen, Moghaddam, Kimball, Jones, Jandt, Miller, Miller
We used full-polarimetric L-band and P-band synthetic aperture radar (SAR) data collected from the recent NASA Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign and Sentinel-1 C-band dual-polarization data to understand the sensitivity of radar backscatter…
Year: 2022
Type: Document
Source: FRAMES

Baltzer, Day, Walker, Greene, Mack, Alexander, Arseneault, Barnes, Bergeron, Boucher, Bourgeau-Chavez, Brown, Carrière, Howard, Gauthier, Parisien, Reid, Rogers, Roland, Sirois, Stehn, Thompson, Turetsky, Veraverbeke, Whitman, Yang, Johnstone
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of…
Year: 2021
Type: Document
Source: FRAMES

Hansen, Fitzsimmons, Olnes, Williams
Climate change and natural disturbances are catalysing forest transitions to different vegetation types, but whether these new communities are resilient alternate states that will persist for decades to centuries is not known. Here, we test how changing climate, disturbance and…
Year: 2021
Type: Document
Source: FRAMES

Bowring, Jones, Ciais, Guenet, Abiven
Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy…
Year: 2022
Type: Document
Source: FRAMES

Palm, Suitor, Joly, Herriges, Kelly, Hervieux, Russell, Bentzen, Larter, Hebblewhite
Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help protect globally significant carbon reserves beneath permafrost…
Year: 2022
Type: Document
Source: FRAMES