Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 95

Finney
Why is calibrating the fire behavior models important to predicting fire behavior - an interview with Mark Finney a Research Scientist at the RMRS Fire Sciences Lab. Mark highlight's considerations an analyst should make when validating fire behavior models to fire behavior.
Year: 2017
Type: Media
Source: FRAMES

Finney
Why use FSPro - an interview with Mark Finney - This tool was developed to help inform risk based decisions associated with values at risk and probability of fire impacts to those values.
Year: 2017
Type: Media
Source: FRAMES

Finney
Mark Finney provides some considerations when setting up FSPro analyses - What is it you want to know from the analysis - is it the likely hood something is going to happen or is it the potential something is going to happen? These are different questions and the analyst can…
Year: 2017
Type: Media
Source: FRAMES

Viegas, Neto
Modelling of the wind effect on the rate of spread of a flame in a forest fire usually employs a wind velocity measured at mid-flame height. An alternative formulation is proposed in this paper, based on the wall shear-stress produced by the wind on the fuelbed in the absence of…
Year: 1991
Type: Document
Source: TTRS

Roads, Ueyoshi, Chen, Alpert, Fujioka
The forecast skill of the National Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1, 1988 to May 31, 1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire…
Year: 1991
Type: Document
Source: TTRS

Lopes, Ribeiro, Viegas, Raposo
The present work addresses the problem of how wind should be taken into account in fire spread simulations. The study was based on the software system FireStation, which incorporates a surface fire spread model and a solver for the fluid flow (Navier-Stokes) equations. The…
Year: 2017
Type: Document
Source: TTRS

Gould, Sullivan, Hurley, Koul
Different methods can be used to measure the time and distance of travel of a fire and thus its speed. The selection of a particular method will depend on the experimental objectives, design, scale, location (in the laboratory or field), required accuracy and resources available…
Year: 2017
Type: Document
Source: TTRS

Ziel
This guide offers recommendations for using Canadian Forest Fire Danger Rating System (CFFDRS) fuel moisture codes and fire behavior indices from the Fire Weather Index (FWI) system to provide objective guidance for initial settings for many analysis inputs to WFDSS and IFTDSS.…
Year: 2017
Type: Document
Source: FRAMES

Ziel, Barnes, Stratton
"WFDSS Analyses: Getting Ready for the 2017 Season" webinar on May 17, 2017, organized by the Fire Modeling and Analysis Committee and presented by Rick Stratton, Jennifer Barnes, and Robert Ziel.
Year: 2017
Type: Media
Source: FRAMES

These tables calculate Dew Point and Relative Humidity based on the observed wet bulb and dry bulb temperatures and the elevation at the site of the observation.
Year: 2017
Type: Document
Source: FRAMES

McFayden
WeatherSHIELD (Short & Intermediate Ensemble & Long-term Dynamic Scenarios - Prototype) presented by Colin McFayden.
Year: 2017
Type: Media
Source: FRAMES

Strader, Jandt, Jenkins, York, Ziel
Presented by Heidi Strader, Randi Jandt, Jenn Jenkins, Alison York and Robert Ziel. Optional webinar for AFSC remote sensing workshop presenters to introduce the Alaska fire management context. We will summarize the natural history of fire in the state, explain how fire…
Year: 2017
Type: Media
Source: FRAMES

Stevens
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Seaman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

McCorkle
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Huffman
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Stevens
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Jenkins, Jandt, Ziel
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

Bourgeau-Chavez
From the Spring 2017 AFSC Remote Sensing Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire Management and Science.
Year: 2017
Type: Media
Source: FRAMES

A diversity of partners and interests, federal to private, came together to identify current challenges and research in the wildland fire and air quality impacts realm. Meeting management needs and the opportunity to learn from one another’s expert perspectives were primary…
Year: 2017
Type: Document
Source: FRAMES

The following list of fire research topics and questions were generated by the agencies and organizations within AWFCG during 2016 Fall Fire Review and through other solicitations. The topics were initially ranked by the AWFCG Fire Research, Development and Application Committee…
Year: 2017
Type: Document
Source: FRAMES

Ramsey, Higgins
The tables presented here contain forest fire statistics for the calendar year 1984, 1985, 1986, and 1987 as reported by all Canadian forest fire control agencies. The statistical data are presented separately for each province or other major jurisdiction, and for Canada as a…
Year: 1991
Type: Document
Source: TTRS

Kourtz, Todd
Lightning causes one third of the 9000 wildfires that occur in Canada. Annually, these lightning-caused fires account for 90% of the area burned and cost Canadians at least 150 million dollars in suppression costs and values destroyed. Unlike the fires caused by human negligence…
Year: 1991
Type: Document
Source: TTRS

Weber
This is a review of the essential ingredients needed to make a mathematical model of fire spread through a fuel bed. The physical problem is outlined in general terms. Previous models are classified as statistical, empirical, or physical in accordance with the methods used in…
Year: 1991
Type: Document
Source: TTRS

Hungerford, Campbell
Predictions of soil heating for two models were compared with temperatures and moisture contents measured in laboratory experiments. Columns packed with soil of different water contents and bulk densities were placed under a radiant gas heater. Temperature and water content were…
Year: 1991
Type: Document
Source: TTRS