Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 234

Alexander, Taylor, Page
Using the 2013 Yarnell Hill fatality fire in Arizona as a backdrop, this paper considers whether the global wildland fire community has failed on-the-ground firefighters. To begin answering this question two specific lines of inquiry are addressed: (i) was the fire behavior…
Year: 2016
Type: Document
Source: FRAMES

Smith, Sparks, Kolden, Abatzoglou, Talhelm, Johnson, Boschetti, Lutz, Apostol, Yedinak, Tinkham, Kremens
Most landscape-scale fire severity research relies on correlations between field measures of fire effects and relatively simple spectral reflectance indices that are not direct measures of heat output or changes in plant physiology. Although many authors have highlighted…
Year: 2016
Type: Document
Source: TTRS

Episode 3 of the Fire Danger Learning System describes the dataflow of weather data into the various databases and processors that provide fire danger calculations for the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Episode 2 of the Fire Danger Learning Series discussing the forthcoming 2016 revision to the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Episode #1 of the Fire Danger Learning Series presents the components and indices that compose the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Pimont, Parsons, Rigolot, deColigny, Dupuy, Dreyfus, Linn
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose. We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a…
Year: 2016
Type: Document
Source: TTRS

Katuwal, Calkin, Hand
This study examines the production and efficiency of wildland fire suppression effort We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency…
Year: 2016
Type: Document
Source: TTRS

Drury, Rauscher, Banwell, Huang, Lavezzo
The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based software and data integration framework that organizes fire and fuels software applications into a single online application. IFTDSS is designed to make fuels treatment planning and analysis more…
Year: 2016
Type: Document
Source: TTRS

Alexander
This paper constituents the remarks made during the introduction of the special session 'Standing on the Shoulders of a Giant: A Tribute to George M. Byram (1909-1996) - Pioneering Scientist in Forest Fire Research' held on February 20, 2013, at the International Association of…
Year: 2013
Type: Document
Source: TTRS

Alexander
This paper constituents the closing comments made at the special session 'Standing on the Shoulders of a Giant: A Tribute to George M. Byram (1909-1996) - Pioneering Scientist in Forest Fire Research' held on February 20, 2013, at the International Association of Wildland Fire's…
Year: 2013
Type: Document
Source: TTRS

Steelman
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance…
Year: 2016
Type: Document
Source: TTRS

Barrett, Loboda, McGuire, Genet, Hoy, Kasischke
Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we…
Year: 2016
Type: Document
Source: TTRS

Hayasaka, Tanaka, Bieniek
Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by…
Year: 2016
Type: Document
Source: TTRS

Dash, Fraterrigo, Hu
Wildfire activity in boreal forests is projected to increase dramatically in response to anthropogenic climate change. By altering the spatial arrangement of fuels, land-cover configuration may interact with climate change to influence fire-regime dynamics at landscape and…
Year: 2016
Type: Document
Source: TTRS

Tohidi, Kaye
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be…
Year: 2016
Type: Document
Source: TTRS

Nelson, Connot, Peterson, Martin
The LANDFIRE Program provides comprehensive vegetation and fuel datasets for the entire United States. As with many large-scale ecological datasets, vegetation and landscape conditions must be updated periodically to account for disturbances, growth, and natural succession. The…
Year: 2013
Type: Document
Source: TTRS

Mavsar, González-Cabán, Varela
Forest fires affect millions of people worldwide, and cause major ecosystem and economic impacts at different scales. The management policies implemented to minimize the negative impacts of forest fires require substantial investment of financial, human and organizational…
Year: 2013
Type: Document
Source: TTRS

Kreye, Varner, Dugaw, Cao, Szecsei, Engber
The ignition and combustion of forest floor duff are poorly understood yet have been linked to soil heating and overstory tree mortality in many temperate coniferous forests. Research to date has focused on the characteristics of duff that facilitate ignition and spread,…
Year: 2013
Type: Document
Source: TTRS

Kintisch
Scientists and firefighters ponder new ways to predict the spread of wildfire as the U.S. West faces ever more potent blazes.
Year: 2013
Type: Document
Source: TTRS

Hyde, Dickinson, Bohrer, Calkin, Evers, Gilbertson-Day, Nicolet, Ryan, Tague
Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and…
Year: 2013
Type: Document
Source: FRAMES, TTRS

Finney, Cohen, McAllister, Jolly
We explore the basis of understanding wildland fire behaviour with the intention of stimulating curiosity and promoting fundamental investigations of fire spread problems that persist even in the presence of tremendous modelling advances. Internationally, many fire models have…
Year: 2013
Type: Document
Source: FRAMES, TTRS

Butler, Ottmar, Rupp, Jandt, Miller, Howard, Schmoll, Theisen, Vihnanek, Jimenez
Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through…
Year: 2013
Type: Document
Source: TTRS

Whitman, Rapaport, Sherren
The wildland-urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are…
Year: 2013
Type: Document
Source: TTRS

Wang, Ma, Li
The evaluation of area-specific risks for large fires is of great policy relevance to fire management and prevention. When analyzing data for the burned areas of large fires in Canada, we found that there are dramatic patterns that cannot be adequately modelled by traditional…
Year: 2013
Type: Document
Source: TTRS

Ryan, Opperman
LANDFIRE is the working name given to the Landscape Fire and Resource Management Planning Tools Project (http://www.landfire.gov). The project was initiated in response to mega-fires and the need for managers to have consistent, wall-to-wall (i.e., all wildlands regardless of…
Year: 2013
Type: Document
Source: TTRS