Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 36

Watts, Samburova, Moosmüller
Studies of the emissions from wildland fires are important for understanding the role of these events in the production, transport, and fate of emitted gases and particulate matter, and, consequently, their impact on atmospheric and ecological processes, and on human health and…
Year: 2020
Type: Document
Source: FRAMES

York, Bhatt, Gargulinski, Grabinski, Jain, Soja, Thoman, Ziel
Despite the low annual temperatures and short growing seasons that are characteristic of high northern latitudes (HNL), wildland fire is the dominant ecological disturbance within the region's boreal forest, the world's largest terrestrial biome. The boreal forest, also known as…
Year: 2020
Type: Document
Source: FRAMES

Runyon, Gray, Jenkins
High-elevation five-needle pine trees are a group of Pinus species in the subgenus Strobus that occur at the edges of plant growth near the alpine tree line. These species are ecologically very important and are also threatened by climate-driven insect outbreaks and an exotic…
Year: 2020
Type: Document
Source: FRAMES

Bendick, Hoylman
A topological data analysis (TDA) of 200,000 U.S. wildfires larger than 5 acres indicates that events with the largest final burned areas are associated with systematically low fuel moistures, low precipitation, and high vapor pressure deficits in the 30 days prior to the fire…
Year: 2020
Type: Document
Source: FRAMES

Bowman, Kolden, Abatzoglou, Johnston, Van der Werf, Flannigan
Vegetation fires are an essential component of the Earth system but can also cause substantial economic losses, severe air pollution, human mortality and environmental damage. Contemporary fire regimes are increasingly impacted by human activities and climate change, but, owing…
Year: 2020
Type: Document
Source: FRAMES

Walker, Rogers, Veraverbeke, Johnstone, Baltzer, Barrett, Bourgeau-Chavez, Day, de Groot, Dieleman, Goetz, Hoy, Jenkins, Kane, Parisien, Potter, Schuur, Turetsky, Whitman, Mack
Carbon (C) emissions from wildfires are a key terrestrial–atmosphere interaction that influences global atmospheric composition and climate. Positive feedbacks between climate warming and boreal wildfires are predicted based on top-down controls of fire weather and climate, but…
Year: 2020
Type: Document
Source: FRAMES

Horel, Crosman, Kochanski, Ziel
This study evaluated the ability of the High Resolution Rapid Refresh (HRRR) modeling system to forecast the characteristics of mesoscale atmospheric boundaries arising from thunderstorm outflows, gust fronts, and downburst winds (referred collectively as convective outflows)…
Year: 2020
Type: Document
Source: FRAMES

Hudson, Bray, Blunck, Page, Butler
This work reports characteristics of embers generated by torching trees and seeks to identify the important physical and biological factors involved. The size of embers, number flux and propensity to ignite spot fires (i.e. number flux of ‘hot’ embers) are reported for several…
Year: 2020
Type: Document
Source: FRAMES

Curcio, Mueller, Lahm, Fitch, Hyde
The Smoke and Roadway Safety Guide provides wildland fire personnel the tools and methods to effectively plan and forecast for roadway smoke impacts and to monitor, respond to, and mitigate smoke on roadways to reduce the risk to the public and fire personnel. This publication:…
Year: 2020
Type: Document
Source: FRAMES

Fernandes, Sil, Rossa, Ascoli, Cruz, Alexander
Wildfire environmental impacts and the threat they pose to human live and values depend of how fast it spreads, how much biomass is consumed, and how much energy it releases and at what rate. Nearly every feature of contemporary fire management relies upon the understanding and…
Year: 2020
Type: Document
Source: FRAMES

Alexander, Cruz
A 3-m between crown spacing is a commonly cited criterion found in the wildland-urban interface fire literature for minimizing the likelihood of a fully-developed crown fire from occurring in a conifer forest on level terrain. The validity of this general recommendation is…
Year: 2020
Type: Document
Source: FRAMES

Zhang, Zussman, Yarin
Forest fires are common large-scale environmental disasters with annual death toll and damages on the scale of tens of billions of dollars. They leave scars visible from space. In the context of climate change, forest fire severity is predicted to increase. Not only forest fires…
Year: 2020
Type: Document
Source: FRAMES

Kerns, Tortorelli, Day, Nietupski, Barros, Kim, Krawchuk
Exotic grasses are a widespread set of invasive species that are notable for their ability to significantly alter key aspects of ecosystem function. Understanding the role and importance of these invaders in forested landscapes has been limited but is now rising, as grasses from…
Year: 2020
Type: Document
Source: FRAMES

Rowell, Loudermilk, Hawley, Pokswinski, Seielstad, Queen, O'Brien, Hudak, Goodrick, Hiers
The spatial pattern of surface fuelbeds in fire-dependent ecosystems are rarely captured using long-standing fuel sampling methods. New techniques, both field sampling and remote sensing, that capture vegetation fuel type, biomass, and volume at super fine-scales (cm to dm) in…
Year: 2020
Type: Document
Source: FRAMES

Hiers, O'Brien, Varner, Butler, Dickinson, Furman, Gallagher, Godwin, Goodrick, Hood, Hudak, Kobziar, Linn, Loudermilk, McCaffrey, Robertson, Rowell, Skowronski, Watts, Yedinak
The realm of wildland fire science encompasses both wild and prescribed fires. Most of the research in the broader field has focused on wildfires, however, despite the prevalence of prescribed fires and demonstrated need for science to guide its application. We argue that…
Year: 2020
Type: Document
Source: FRAMES

Al Abri, Grogan
The dramatic increase in the number of uncontrollable wildfires in the United States has become an important policy issue as they threaten valuable forests and human property. The derived stochastic dynamic model of this study is capable of determining optimal fuel treatment…
Year: 2020
Type: Document
Source: FRAMES

Linn, Goodrick, Brambilla, Brown, Middleton, O'Brien, Hiers
Coupled fire-atmospheric modeling tools are increasingly used to understand the complex and dynamic behavior of wildland fires. Multiple research tools linking combustion to fluid flow use Navier-Stokes numerical solutions coupled to a thermodynamic model to understand fire-…
Year: 2020
Type: Document
Source: FRAMES

Kennedy, Prichard, McKenzie, French
Smoke emissions from wildland fires contribute to concentrations of atmospheric particulate matter and greenhouse gases, influencing public health and climate. Prediction of emissions is critical for smoke management to mitigate the effects on visibility and air quality. Models…
Year: 2020
Type: Document
Source: FRAMES

Karp, Holman, Hopper, Grice, Freeman
Polycyclic aromatic hydrocarbons (PAHs), produced via incomplete combustion of organics, convey signatures of vegetation burned in the geologic past. New and published burn experiments reveal how the quantity, distributions, and isotopic abundances of fire-derived PAHs were…
Year: 2020
Type: Document
Source: FRAMES

Santín, Doerr, Jones, Merino, Warneke, Roberts
Vegetation fires play an important role in global and regional carbon cycles. Due to climate warming and land‐use shifts, fire patterns are changing and fire impacts increasing in many of the world’s regions. Reducing uncertainties in carbon budgeting calculations from fires is…
Year: 2020
Type: Document
Source: FRAMES

Cruz, Alexander, Fernandes, Kilinc, Sil
The prediction of wildfire rate of spread and growth under high wind speeds and dry fuel moisture conditions is key to taking proactive actions to warn and in turn protect communities. We used two datasets of wildfires spreading under critical fire weather conditions to evaluate…
Year: 2020
Type: Document
Source: FRAMES

French, Billmire, Prichard, Kennedy, McKenzie, Larkin, Ottmar
Fuels are highly variable and dynamic in space and time, and fuel loading can vary considerably even within fine spatial scales and within specific fuel types, such as downed wood or organic soils. Given this inherent variability in fuel loadings, it is not good practice to…
Year: 2020
Type: Document
Source: FRAMES

Ritter, Hoffman, Battaglia, Stevens-Rumann, Mell
In frequent‐fire forests, wildland fire acts as a self‐ regulating process creating forest structures that consist of a fine‐grained mosaic of isolated trees, tree groups of various sizes, and non‐treed openings. Though the self‐regulation of forest structure through repeated…
Year: 2020
Type: Document
Source: FRAMES

The Fire Continuum Conference, co-sponsored by the Association for Fire Ecology and the International Association of Wildland Fire, was designed to cover both the biophysical and human dimensions aspects of fire along the fire continuum. This proceedings includes many of topics…
Year: 2020
Type: Document
Source: FRAMES

Suzuki, Manzello
Large outdoor fires are one of the prominent fire problems in the world. Spot fires, caused by firebrands, are known as a key mechanism of rapid fire spread. Firebrands ignite unburned fuels far ahead of the fire front. In large outdoor fires, firebrands are thought to…
Year: 2020
Type: Document
Source: FRAMES