Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 113

Episode 2 of the Fire Danger Learning Series discussing the forthcoming 2016 revision to the US National Fire Danger Rating System.
Year: 2016
Type: Media
Source: FRAMES

Lutes
FOFEM - A First Order Fire Effects Model - is a computer program that was developed to meet needs of resource managers, planners, and analysts in predicting and planning for fire effects. Quantitative predictions of fire effects are needed for planning prescribed fires that best…
Year: 2016
Type: Document
Source: FRAMES

Pimont, Parsons, Rigolot, deColigny, Dupuy, Dreyfus, Linn
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose. We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a…
Year: 2016
Type: Document
Source: TTRS

Morimoto, Juday, Young
The boreal forest of Alaska has experienced a small area of forest cuttings, amounting to 7137 ha out of a total of 256,284 ha of timberland in the Fairbanks and Kantishna area of state forest land. Low product values and high costs for management have resulted in a low-input…
Year: 2016
Type: Document
Source: TTRS

Marlon, Kelly, Daniau, Vannière, Power, Bartlein, Higuera, Blarquez, Brewer, Brücher, Feurdean, Gil-Romera, Iglesias, Maezumi, Magi, Courtney Mustaphi, Zhihai
The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in…
Year: 2016
Type: Document
Source: TTRS

French, Whitley, Jenkins
The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012…
Year: 2016
Type: Document
Source: TTRS

Fischer, Spies, Steelman, Moseley, Johnson, Bailey, Ager, Bourgeron, Charnley, Collins, Kline, Leahy, Littell, Millington, Nielsen-Pincus, Olsen, Paveglio, Roos, Steen-Adams, Stevens, Vukomanovic, White, Bowman
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological 'pathology': that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales.…
Year: 2016
Type: Document
Source: TTRS

Drury, Rauscher, Banwell, Huang, Lavezzo
The Interagency Fuels Treatment Decision Support System (IFTDSS) is a web-based software and data integration framework that organizes fire and fuels software applications into a single online application. IFTDSS is designed to make fuels treatment planning and analysis more…
Year: 2016
Type: Document
Source: TTRS

Balch, Nagy, Archibald, Bowman, Moritz, Roos, Scott, Williamson
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to…
Year: 2016
Type: Document
Source: TTRS

Steelman
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance…
Year: 2016
Type: Document
Source: TTRS

Sullivan, Pattison, Brownlee, Cahoon, Hollingsworth
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We…
Year: 2016
Type: Document
Source: TTRS

Barrett, Loboda, McGuire, Genet, Hoy, Kasischke
Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we…
Year: 2016
Type: Document
Source: TTRS

Ferster, Eskelson, Andison, LeMay
Wildfires are a common disturbance event in the Canadian boreal forest. Within event boundaries, the level of vegetation mortality varies greatly. Understanding where surviving vegetation occurs within fire events and how this relates to pre-fire vegetation, topography, and fire…
Year: 2016
Type: Document
Source: TTRS

Dash, Fraterrigo, Hu
Wildfire activity in boreal forests is projected to increase dramatically in response to anthropogenic climate change. By altering the spatial arrangement of fuels, land-cover configuration may interact with climate change to influence fire-regime dynamics at landscape and…
Year: 2016
Type: Document
Source: TTRS

Yeboah, Chen, Kingston
Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have…
Year: 2016
Type: Document
Source: TTRS

Waring, Coops
A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial…
Year: 2016
Type: Document
Source: TTRS

Wei, Rideout, Kirsch, Kernohan
Hazard fuel reduction and wildland fire preparedness programs are two important budgeting components in the US National Park Service strategic wildland fire planning. During the planning process, each national park independently conducts analysis to understand the benefits from…
Year: 2016
Type: Document
Source: FRAMES

Breen
Alaska Fire Science Consortium Workshop | Thursday, October 13, 2016Presenter: Amy Breen
Year: 2016
Type: Media
Source: FRAMES

Gallacher
Wildland fire behavior research in the last 100 years has largely focused on understanding the physical phenomena behind fire spread and on developing models that can predict fire behavior. Research advances in the areas of live-fuel combustion and combustion modeling have…
Year: 2016
Type: Document
Source: FRAMES

Weise, Fletcher, Mahalingam, McAllister, Shotorban, Jolly
Effect of moisture content and heat flux type on ignition of foliage from 10 live fuels was examined over the course of a year using two apparatuses: a flat-flame burner coupled with a radiant panel and a Forced Ignition and flame Spread Test (FIST) apparatus. Results of the…
Year: 2016
Type: Document
Source: FRAMES

Weise, Fletcher, Jolly, Mahalingam, McAllister, Shotorban
After many years of research examining the ignition of wood and other cellulosic fuels, it is still unclear which modes of heat transfer will result in successful ignition of live wildland fuel particles. Thermal radiation can cause a fuel particle to pyrolyze to produce a…
Year: 2016
Type: Project
Source: FRAMES

Ziel
With updates to the National Fire Danger Rating System (NFDRS) to be implemented over the next two years, fire managers in Alaska and the Lake States need to learn about the most important revisions. Changes to fine fuel moistures estimates in the US systems are already…
Year: 2016
Type: Media
Source: FRAMES

He, Belcher, Lamont, Lim
Current phylogenetic evidence shows that fire began shaping the evolution of land plants 125 Ma, although the fossil charcoal record indicates that fire has a much longer history (>350 Ma). Serotiny (on-plant seed storage) is generally accepted as an adaptation to fire among…
Year: 2016
Type: Document
Source: FRAMES, TTRS

Abrahamson, Innes
The Northern Rockies Fire Science Network and Northwest Fire Science Consortium teamed up with Fire Effects Information System (FEIS) staff to introduce new fire regime products and demonstrate new search functions to inform fire management planning and decision-making in the…
Year: 2016
Type: Media
Source: FRAMES

Graham, Middlemis-Brown
On nearly every continent, prior and current cultures have practiced land management using fire. Huffman calls the knowledge acquired by people “Traditional Fire Knowledge” (TFK), which consists of “fire‐related knowledge, beliefs and practices that have been developed and…
Year: 2016
Type: Document
Source: FRAMES