Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 76 - 100 of 2877

Reddy, Sarika
We identified hot spots trends in global vegetation fires based on 10-year long MODIS fire products. Additionally, we analyzed the occurrence of fire hot spots across climate zones, global land cover and global biodiversity hot spots. Fire hot spot zones were delineated by…
Year: 2022
Type: Document
Source: FRAMES

Engström, Abbaszadeh, Keellings, Deb, Moradkhani
This study seeks to use machine learning to investigate the role of meteorological and climate variables on wildfire occurrence in the Arctic and the global tropical forests biomes. Using monthly fire counts observed by the MODIS satellites in combination with temperature and…
Year: 2022
Type: Document
Source: FRAMES

Snitker, Roos, Sullivan, Maezumi, Bird, Coughlan, Derr, Gassaway, Klimaszewski-Patterson, Loehman
Humans have influenced global fire activity for millennia and will continue to do so into the future. Given the long-term interaction between humans and fire, we propose a collaborative research agenda linking archaeology and fire science that emphasizes the socioecological…
Year: 2022
Type: Document
Source: FRAMES

Margolis, Guiterman
A recent collaboration by ~90 tree-ring and fire-scar scientists has resulted in the publication of the newly compiled North American Tree-Ring Fire-Scar Network (NAFSN), which contains 2,562 sites, > 37,000 fire-scarred trees, and covers large parts of North America. In this…
Year: 2022
Type: Media
Source: FRAMES

Pugh, Colley, Dugdale, Edwards, Flitcroft, Holz, Johnson, Mariani, Means-Brous, Meyer, Moffett, Renan, Schrodt, Thorne, Valman, Wijayratne, Field
Background Historically, wildfire regimes produced important landscape-scale disturbances in many regions globally. The “pyrodiversity begets biodiversity” hypothesis suggests that wildfires that generate temporally and spatially heterogeneous mosaics of wildfire severity and…
Year: 2022
Type: Document
Source: FRAMES

Ebel
Infiltration and associated soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), sorptivity (S), or saturated soil-water content (θs) are measured after wildland fires to assess risks of water-related hazards and water supply impairment. Yet the…
Year: 2022
Type: Document
Source: FRAMES

Linley, Jolly, Doherty, Geary, Armenteras, Belcher, Bird, Duane, Fletcher, Giorgis, Haslem, Jones, Kelly, Lee, Nolan, Parr, Pausas, Price, Regos, Ritchie, Ruffault, Williamson, Wu, Nimmo
Background ‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous. Approach We sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a…
Year: 2022
Type: Document
Source: FRAMES

Haghani, Kuligowski, Rajabifard, Kolden
Along with the increase in the frequency of disastrous wildfires and bushfires around the world during the recent decades, scholarly research efforts have also intensified in this domain. This work investigates divisions and trends of the domain of wildfire/bushfire research.…
Year: 2022
Type: Document
Source: FRAMES

Gollner
This seminar is part of the USFS Missoula Fire Lab Seminar Series. Large wildfires of increasing frequency and severity threaten local populations and natural resources while contributing carbon emissions into the earth-climate system. Although wildfires have been researched and…
Year: 2022
Type: Media
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Jones, Abatzoglou, Veraverbeke, Andela, Lasslop, Forkel, Smith, Burton, Betts, Van der Werf
Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here we review current understanding of the impacts of climate change on fire…
Year: 2022
Type: Document
Source: FRAMES

Sample, Thode, Peterson, Gallagher, Flatley, Friggens, Evans, Loehman, Hedwall, Brandt, Janowiak, Swanston
As the effects of climate change accumulate and intensify, resource managers juggle existing goals and new mandates to operationalize adaptation. Fire managers contend with the direct effects of climate change on resources in addition to climate-induced disruptions to fire…
Year: 2022
Type: Document
Source: FRAMES

Trigg
Calculated values of precipitation effectiveness index and temperature efficiency index for 48 weather observation stations on the Alaska mainland are used to delineate areas that have different climatic subclassifications during the wildfire season of April through September.…
Year: 1971
Type: Document
Source: FRAMES

Wang, Swystun, Flannigan
Great efforts have been made to understand the impacts of a changing climate on fire activity; however, a reliable approach with high prediction confidence has yet to be found. By establishing linkages between the longest duration of fire-conducive weather spell and fire…
Year: 2022
Type: Document
Source: FRAMES

Leverkus, Thorn, Gustafsson, Noss, Müller, Pausas, Lindenmayer
[from the text] A recent warning to humanity signed by >15 000 scientists identified global environmental threats that require urgent policy response from world leaders (Ripple et al 2017). Here, we document challenges and propose solutions related to ongoing shifts in…
Year: 2021
Type: Document
Source: FRAMES

Son, Kim, Wang, Jeong, Woo, Jeong, Lee, Kim, LaPlante, Kwon
The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In…
Year: 2021
Type: Document
Source: FRAMES

Yasunari, Nakamura, Kim, Choi, Lee, Tachibana, da Silva
Long-term assessment of severe wildfires and associated air pollution and related climate patterns in and around the Arctic is essential for assessing healthy human life status. To examine the relationships, we analyzed the National Aeronautics and Space Administration (NASA)…
Year: 2021
Type: Document
Source: FRAMES

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Ludwig, Natali, Mann, Schade, Holmes, Powell, Fiske, Commane
Climate change is causing an intensification in tundra fires across the Arctic, including the unprecedented 2015 fires in the Yukon-Kuskokwim (YK) Delta. The YK Delta contains extensive surface waters (∼33% cover) and significant quantities of organic carbon, much of which is…
Year: 2022
Type: Document
Source: FRAMES

Sanderfoot, Bassing, Brusa, Emmet, Swift, Gardner
Climate change is intensifying global wildfire activity, and people and wildlife are increasingly exposed to hazardous air pollution during large-scale smoke events. Although wildfire smoke is considered a growing risk to public health, few studies have investigated the impacts…
Year: 2021
Type: Document
Source: FRAMES

McGowan-Stinski, Charney, Kobziar, Wickman, Pitrolo
This is the 3rd panel discussion in Season 2 of the Fueling Collaboration series. Moderator Jack McGowan-Stinski (Lake States Fire Science Consortium) discusses all things smoke. What is it? What are the messages we should be communicating? What are the tools that can help us…
Year: 2022
Type: Media
Source: FRAMES

Koch, Bogard, Butman, Finlay, Ebel, James, Johnston, Jorgenson, Pastick, Spencer, Striegl, Walvoord, Wickland
Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC) previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate-driven increases in fire and thermokarst may play a key role in OC mobilization by thawing…
Year: 2022
Type: Document
Source: FRAMES

Yount, Niemi
We present a narrative account of case studies of the recovery of flowing water systems from disturbance, focusing on the investigators' conclusions about recovery time and the factors contributing to recovery. We restrict our attention to case studies in which the recovery of…
Year: 1990
Type: Document
Source: FRAMES

Huang, Mote, Simpson
This seminar is part of the USFS Missoula Fire Lab Seminar Series. The Missoula Fire Sciences Laboratory will hold a virtual two-part panel discussion on the state-of-the-science regarding climate and wildland fire during the upcoming fall semester of the recurring Fire Lab…
Year: 2021
Type: Media
Source: FRAMES