Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 8 of 8

Dodds, Gido, Whiles, Daniels, Grudzinski
We propose the Stream Biome Gradient Concept as a way to predict macroscale biological patterns in streams. This concept is based on the hypothesis that many abiotic and biotic features of streams change predictably along climate (temperature and precipitation) gradients because…
Year: 2015
Type: Document
Source: TTRS

Gharun, Possell, Bell, Adams
Fire plays a critical role in biodiversity, carbon balance, soil erosion, and nutrient and hydrological cycles. While empirical evidence shows that fuel reduction burning can reduce the incidence, severity and extent of unplanned fires in Australia and elsewhere, the integration…
Year: 2017
Type: Document
Source: TTRS

Ebel, Martin
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated…
Year: 2017
Type: Document
Source: TTRS

Bixby, Cooper, Gresswell, Brown, Dahm, Dwire
Fire is a prevalent feature of many landscapes and has numerous and complex effects on geological, hydrological, ecological, and economic systems. In some regions, the frequency and intensity of wildfire have increased in recent years and are projected to escalate with predicted…
Year: 2015
Type: Document
Source: FRAMES, TTRS

Larouche, Abbott, Bowden, Jones
In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC) to aquatic ecosystems, however the magnitude of these effects…
Year: 2015
Type: Document
Source: FRAMES

Fire is an important disturbance in riparian systems-consuming vegetation; increasing light; creating snags and debris flows; altering habitat structure; and affecting stream conditions, erosion, and hydrology. For many years, land managers have worked to keep fire out of…
Year: 2015
Type: Document
Source: FRAMES

Fires are increasing in frequency, size and intensity partly due to climate change and land management practices, yet there is limited knowledge of the impacts of smoke emissions - both short term and long term. EPA is using its expertise in air quality research to fill the gaps…
Year: 2017
Type: Website
Source: FRAMES

Larouche, Abbott, Bowden, Jones
In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC) to aquatic ecosystems, however the magnitude of these effects…
Year: 2015
Type: Document
Source: TTRS