Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 51 - 75 of 2277

Holsinger, Parks, Parisien, Miller, Batllori, Moritz
Climate change poses a serious threat to biodiversity and unprecedented challenges to the preservation and protection of natural landscapes. We evaluated how climate change might affect vegetation in 22 of the largest and most iconic protected area (PA) complexes across North…
Year: 2019
Type: Document
Source: FRAMES

Parks, Holsinger, Littlefield, Dobrowski, Zeller, Abatzoglou, Besancon, Nordgren, Lawler
Protected areas are essential to conserving biodiversity, yet changing climatic conditions challenge their efficacy. For example, novel and disappearing climates within the protected area network indicate that extant species may not have suitable climate in protected areas in…
Year: 2022
Type: Document
Source: FRAMES

Dobrowski, Littlefield, Lyons, Hollenberg, Carroll, Parks, Abatzoglou, Hegewisch, Gage
Expanding the global protected area network is critical for addressing biodiversity declines and the climate crisis. However, how climate change will affect ecosystem representation within the protected area network remains unclear. Here we use spatial climate analogs to examine…
Year: 2021
Type: Document
Source: FRAMES

Parks, Carroll, Dobrowski, Allred
Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the…
Year: 2020
Type: Document
Source: FRAMES

Bastit, Brunette, Montagné-Huck
Natural disturbances are paramount in the development of ecosystems but may jeopardise the provision of forest ecosystem services. Climate change exacerbates this threat and favours interactions between disturbances. Our objective was thus to capture this dimension of multiple…
Year: 2023
Type: Document
Source: FRAMES

Since 1998, the Joint Fire Science Program (JFSP) has provided funding and science delivery for scientific studies associated with managing wildland fire, fuels, and fire-impacted ecosystems to respond to emerging needs of managers, practitioners, and policymakers from local to…
Year: 2022
Type: Document
Source: FRAMES

Boyer, Wagenbrenner, Zhang
Climate change is a crucial factor in increasing wildfire risks, where warmer and drier conditions, increased drought periods, and increased lightning strikes have made many areas more susceptible to burning. This special issue focuses on Wildfire and Hydrological Processes,…
Year: 2022
Type: Document
Source: FRAMES

Reddy, Sarika
We identified hot spots trends in global vegetation fires based on 10-year long MODIS fire products. Additionally, we analyzed the occurrence of fire hot spots across climate zones, global land cover and global biodiversity hot spots. Fire hot spot zones were delineated by…
Year: 2022
Type: Document
Source: FRAMES

Engström, Abbaszadeh, Keellings, Deb, Moradkhani
This study seeks to use machine learning to investigate the role of meteorological and climate variables on wildfire occurrence in the Arctic and the global tropical forests biomes. Using monthly fire counts observed by the MODIS satellites in combination with temperature and…
Year: 2022
Type: Document
Source: FRAMES

Snitker, Roos, Sullivan, Maezumi, Bird, Coughlan, Derr, Gassaway, Klimaszewski-Patterson, Loehman
Humans have influenced global fire activity for millennia and will continue to do so into the future. Given the long-term interaction between humans and fire, we propose a collaborative research agenda linking archaeology and fire science that emphasizes the socioecological…
Year: 2022
Type: Document
Source: FRAMES

Linley, Jolly, Doherty, Geary, Armenteras, Belcher, Bird, Duane, Fletcher, Giorgis, Haslem, Jones, Kelly, Lee, Nolan, Parr, Pausas, Price, Regos, Ritchie, Ruffault, Williamson, Wu, Nimmo
Background ‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous. Approach We sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a…
Year: 2022
Type: Document
Source: FRAMES

Haghani, Kuligowski, Rajabifard, Kolden
Along with the increase in the frequency of disastrous wildfires and bushfires around the world during the recent decades, scholarly research efforts have also intensified in this domain. This work investigates divisions and trends of the domain of wildfire/bushfire research.…
Year: 2022
Type: Document
Source: FRAMES

Jones, Abatzoglou, Veraverbeke, Andela, Lasslop, Forkel, Smith, Burton, Betts, Van der Werf
Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here we review current understanding of the impacts of climate change on fire…
Year: 2022
Type: Document
Source: FRAMES

Sample, Thode, Peterson, Gallagher, Flatley, Friggens, Evans, Loehman, Hedwall, Brandt, Janowiak, Swanston
As the effects of climate change accumulate and intensify, resource managers juggle existing goals and new mandates to operationalize adaptation. Fire managers contend with the direct effects of climate change on resources in addition to climate-induced disruptions to fire…
Year: 2022
Type: Document
Source: FRAMES

Trigg
Calculated values of precipitation effectiveness index and temperature efficiency index for 48 weather observation stations on the Alaska mainland are used to delineate areas that have different climatic subclassifications during the wildfire season of April through September.…
Year: 1971
Type: Document
Source: FRAMES

Wang, Swystun, Flannigan
Great efforts have been made to understand the impacts of a changing climate on fire activity; however, a reliable approach with high prediction confidence has yet to be found. By establishing linkages between the longest duration of fire-conducive weather spell and fire…
Year: 2022
Type: Document
Source: FRAMES

Leverkus, Thorn, Gustafsson, Noss, Müller, Pausas, Lindenmayer
[from the text] A recent warning to humanity signed by >15 000 scientists identified global environmental threats that require urgent policy response from world leaders (Ripple et al 2017). Here, we document challenges and propose solutions related to ongoing shifts in…
Year: 2021
Type: Document
Source: FRAMES

Son, Kim, Wang, Jeong, Woo, Jeong, Lee, Kim, LaPlante, Kwon
The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In…
Year: 2021
Type: Document
Source: FRAMES

Yasunari, Nakamura, Kim, Choi, Lee, Tachibana, da Silva
Long-term assessment of severe wildfires and associated air pollution and related climate patterns in and around the Arctic is essential for assessing healthy human life status. To examine the relationships, we analyzed the National Aeronautics and Space Administration (NASA)…
Year: 2021
Type: Document
Source: FRAMES

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Sanderfoot, Bassing, Brusa, Emmet, Swift, Gardner
Climate change is intensifying global wildfire activity, and people and wildlife are increasingly exposed to hazardous air pollution during large-scale smoke events. Although wildfire smoke is considered a growing risk to public health, few studies have investigated the impacts…
Year: 2021
Type: Document
Source: FRAMES

[from the text] Under this strategy, the Forest Service will work with partners to engineer a paradigm shift by focusing fuels and forest health treatments more strategically and at the scale of the problem, using the best available science as the guide. At the Forest Service,…
Year: 2022
Type: Document
Source: FRAMES

Nimmo, Andersen, Archibald, Boer, Brotons, Parr, Tingley
[from the text] Fire is one of Earth's most potent agents of ecological change. This Special Issue comes in the wake of a series of extreme wildfires across the world, from the Amazon, to Siberia, California, Portugal, South Africa and eastern Australia (Duane et al., 2021).…
Year: 2022
Type: Document
Source: FRAMES

Hanan, Kennedy, Ren, Johnson, Smith
Climate change has lengthened wildfire seasons and transformed fire regimes throughout the world. Thus, capturing fuel and fire dynamics is critical for projecting Earth system processes in warmer and drier future. Recent advances in fire regime modeling have linked land surface…
Year: 2022
Type: Document
Source: FRAMES

Le, Kim, Bae
Wildfires alter the composition and structure of ecosystems and result in huge economic costs. While future fires and ecosystems recovery might become increasingly challenging to manage under warming environment, further understanding of the main drivers of wildfires is…
Year: 2022
Type: Document
Source: FRAMES