Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 2526 - 2533 of 2533

Lukenbach, Devito, Kettridge, Petrone, Waddington
Wildfire is the largest disturbance affecting northern peatlands; however, little is known about how burn severity (organic soil depth of burn) alters post-fire hydrological conditions that control the recovery of keystone peatland mosses (i.e. Sphagnum). For this reason, we…
Year: 2016
Type: Document
Source: FRAMES, TTRS

McMahon
Forest fires can be divided into two broad classes-wildfires and prescribed fires. Wildfires, whether caused by nature (lightning, etc.) or by the accidental or malicious acts of man, are not planned by forest managers and do not occur under controlled conditions. They can be…
Year: 1983
Type: Document
Source: FRAMES, TTRS

van Bellen, Garneau, Bergeron
The global boreal forests comprise large stocks of organic carbon that vary with climate and fire regimes. Global warming is likely to influence several aspects of fire and cause shifts in carbon sequestration patterns. Fire severity or forest floor depth of burn is one…
Year: 2010
Type: Document
Source: FRAMES

Flannigan, Krawchuk, de Groot, Wotton, Gowman
Wildland fire is a global phenomenon, and a result of interactions between climate-weather, fuels and people. Our climate is changing rapidly primarily through the release of greenhouse gases that may have profound and possibly unexpected impacts on global fire activity. The…
Year: 2009
Type: Document
Source: FRAMES

Seiler, Crutzen
In order to estimate the production of charcoal and the atmospheric emissions of trace gases volatilized by burning we have estimated the global amounts of biomass which are affected by fires. We have roughly calculated annual gross burning rates ranging between about 5 Pg and 9…
Year: 1980
Type: Document
Source: FRAMES, TTRS

Tidwell, Brown
From the text ... 'One way to protect the WUI is to restore surrounding landscapes to a healthy, resilient condition. Healthy, resilient forest ecosystems are less likely to see uncharacteristically severe wildfires that turn into human and ecological disasters. The USDA Forest…
Year: 2010
Type: Document
Source: TTRS

Carretero
From the text...”Extinguishing forest fires must be done urgently, in most cases, using whatever tools at hand, with little time to employ mechanical methods. Making matters worse, location of the fire cannot be foreseen, nor such factors as wind direction and velocity. Passive…
Year: 1972
Type: Document
Source: TTRS

Bowman, Balch, Artaxo, Bond, Carlson, Cochrane, D'Antonio, DeFries, Doyle, Harrison, Johnston, Keeley, Krawchuk, Kull, Marston, Moritz, Prentice, Roos, Scott, Swetnam, Van der Werf, Pyne
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire…
Year: 2009
Type: Document
Source: FRAMES, TTRS