Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 101 - 125 of 7336

Ghosh, Kumar
Forest fire poses a serious threat to wildlife, environment, and all mankind. This threat has prompted the development of various intelligent and computer vision based systems to detect forest fire. This article proposes a novel hybrid deep learning model to detect forest fire.…
Year: 2022
Type: Document
Source: FRAMES

Linley, Jolly, Doherty, Geary, Armenteras, Belcher, Bird, Duane, Fletcher, Giorgis, Haslem, Jones, Kelly, Lee, Nolan, Parr, Pausas, Price, Regos, Ritchie, Ruffault, Williamson, Wu, Nimmo
Background ‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous. Approach We sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a…
Year: 2022
Type: Document
Source: FRAMES

Shi, Shi, Jiang, Liu
Fire is a major disturbance affecting plant communities in terrestrial ecosystems. Understanding fire effects on soil seed banks is critical in the context of altered global fire regimes. Through a systematic and quantitative review of the literature, we provide the first global…
Year: 2022
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Hayes, Sekavec, Quigley, Ewell, Cunningham
In 2007, the Wildland Fire Leadership Council (WFLC) organized a task group to: 1) Develop a monitoring plan for implementing a directive from the National Fire Plan’s 10-Year Implementation Strategy, and 2) Respond to the Healthy Forest Restoration Act requirement of monitoring…
Year: 2008
Type: Document
Source: FRAMES

Jones, Abatzoglou, Veraverbeke, Andela, Lasslop, Forkel, Smith, Burton, Betts, Van der Werf
Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here we review current understanding of the impacts of climate change on fire…
Year: 2022
Type: Document
Source: FRAMES

Vazquez-Varela, Martínez-Navarro, Abad-González
Building fire-adaptive communities and fostering fire-resilient landscapes have become two of the main research strands of wildfire science that go beyond strictly biophysical viewpoints and call for the integration of complementary visions of landscapes and the communities…
Year: 2022
Type: Document
Source: FRAMES

Sample, Thode, Peterson, Gallagher, Flatley, Friggens, Evans, Loehman, Hedwall, Brandt, Janowiak, Swanston
As the effects of climate change accumulate and intensify, resource managers juggle existing goals and new mandates to operationalize adaptation. Fire managers contend with the direct effects of climate change on resources in addition to climate-induced disruptions to fire…
Year: 2022
Type: Document
Source: FRAMES

Wang, Swystun, Flannigan
Great efforts have been made to understand the impacts of a changing climate on fire activity; however, a reliable approach with high prediction confidence has yet to be found. By establishing linkages between the longest duration of fire-conducive weather spell and fire…
Year: 2022
Type: Document
Source: FRAMES

Justino, Bromwich, Wilson, Silva, Avila-Diaz, Fernandez, Rodrigues
Satellite-based hot-spot analysis for the Pan-Arctic, shows that Asia experiences a greater number of fires compared to North America and Europe. While hot spots are prevalent through the year in Asia, Europe (North America) exhibits marked annual (semi-annual) variability. The…
Year: 2021
Type: Document
Source: FRAMES

Yasunari, Nakamura, Kim, Choi, Lee, Tachibana, da Silva
Long-term assessment of severe wildfires and associated air pollution and related climate patterns in and around the Arctic is essential for assessing healthy human life status. To examine the relationships, we analyzed the National Aeronautics and Space Administration (NASA)…
Year: 2021
Type: Document
Source: FRAMES

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Zhan, Hu, Zhou, Wang, Cai, Li
The occurrence of forest fires can lead to ecological damage, property loss, and human casualties. Current forest fire smoke detection methods do not sufficiently consider the characteristics of smoke with high transparency and no clear edges and have low detection accuracy,…
Year: 2022
Type: Document
Source: FRAMES

Doherty, Geary, Jolly, Macdonald, Miritis, Watchorn, Cherry, Conner, González, Legge, Ritchie, Stawski, Dickman
Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator–prey interactions is fragmented and has not…
Year: 2022
Type: Document
Source: FRAMES

Steketee, Rocha, Gough, Griffin, Klupar, An, Williamson, Rowe
Fire is an important ecological disturbance that can reset ecosystems and initiate changes in plant community composition, ecosystem biogeochemistry, and primary productivity. Since herbivores rely on primary producers for food, changes in vegetation may alter plant-herbivore…
Year: 2022
Type: Document
Source: FRAMES

Robinson, Barnett, Jones, Stanish, Parker
Quantifying the resilience of ecological communities to increasingly frequent and severe environmental disturbance, such as natural disasters, requires long-term and continuous observations and a research community that is itself resilient. Investigators must have reliable…
Year: 2022
Type: Document
Source: FRAMES

Grzesik, Hollingsworth, Ruess, Turetsky
Black spruce forest communities in boreal Alaska have undergone self-replacement succession following low to moderate severity fires for thousands of years. However, recent intensification of interior Alaska’s fire regime, particularly deeper burning of the soil organic layer,…
Year: 2022
Type: Document
Source: FRAMES

Sargentis, Ioannidis, Bairaktaris, Frangedaki, Dimitriadis, Iliopoulou, Koutsoyiannis, Lagaros
There is a widespread perception that every year wildfires are intensifying on a global scale, something that is often used as an indicator of the adverse impacts of global warming. However, from the analysis of wildfires that have occurred in the US, Canada, and Mediterranean…
Year: 2022
Type: Document
Source: FRAMES

Nimmo, Andersen, Archibald, Boer, Brotons, Parr, Tingley
[from the text] Fire is one of Earth's most potent agents of ecological change. This Special Issue comes in the wake of a series of extreme wildfires across the world, from the Amazon, to Siberia, California, Portugal, South Africa and eastern Australia (Duane et al., 2021).…
Year: 2022
Type: Document
Source: FRAMES

Littell, Trainor
Sarah Trainor & Jeremy Littell present at the 2021 Association for Fire Ecology Conference special session: The Nexus of Climate Change and Fire: Taking Science to Action Addressing the unprecedented challenges of climate change, wildland fire, and human land use requires…
Year: 2021
Type: Media
Source: FRAMES

York, Bhatt, Gargulinski, Grabinski, Jain, Soja, Thoman, Ziel
Despite the low annual temperatures and short growing seasons that are characteristic of high northern latitudes (HNL), wildland fire is the dominant ecological disturbance within the region's boreal forest, the world's largest terrestrial biome. The boreal forest, also known as…
Year: 2020
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service Resource Brief for the Arctic Inventory and Monitory Network which briefly summarizes the status of fire extent and frequency in ARCN parks and highlights the historic fire record (WFMI) & perimeter improvements.  The brief is written for a non-…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service web article summarizes fire effects after the 2018 Andrew Creek fire in the Yukon-Charley Rivers National preserve including permafrost and watershed effects and also taking into account the long-term climate trends in the area.
Year: 2021
Type: Document
Source: FRAMES

Douglas, Jorgenson, Genet, Marcot, Nelsen
Climate change and intensification of disturbance regimes are increasing the vulnerability of interior Alaska Department of Defense (DoD) training ranges to widespread land cover and hydrologic changes. This is expected to have profound impacts on wildlife habitats, conservation…
Year: 2022
Type: Document
Source: FRAMES

Walker, Howard, Jean, Johnstone, Roland, Rogers, Schuur, Solvik, Mack
Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future…
Year: 2021
Type: Document
Source: FRAMES