Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 12 of 12

Yount, Niemi
We present a narrative account of case studies of the recovery of flowing water systems from disturbance, focusing on the investigators' conclusions about recovery time and the factors contributing to recovery. We restrict our attention to case studies in which the recovery of…
Year: 1990
Type: Document
Source: FRAMES

Fege, Corrigall
[no description entered]
Year: 1990
Type: Document
Source: TTRS

Robinne, Bladon, Miller, Parisien, Mathieu, Flannigan
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities…
Year: 2018
Type: Document
Source: TTRS

Hallema, Robinne, Bladon
The timing, extent, and severity of forest wildfires have increased in many parts of the world in recent decades. These wildfires can have substantial and devastating impacts on water supply, ecohydrological systems, and sociohydrosystems. Existing frameworks to assess the…
Year: 2018
Type: Document
Source: FRAMES

Falke, Gray
Fire is the dominant ecological disturbance process in boreal forests (coniferous forests consisting mostly of pines, spruces, and larches) and fire frequency, size and severity are increasing in Alaska owing to climate warming. However, interactions among fire, climate,…
Year: 2018
Type: Media
Source: FRAMES

Falke
October 9th, 2018. Part of the Alaska Fire Science Consortium workshop, the presentation introduced the project on fire effects on boreal aquatic ecosystems.
Year: 2018
Type: Media
Source: FRAMES

In the aftermath of the Greater Yellowstone Area fires of 1988, scientists from all across North America recognized the once in a lifetime research opportunities these fires presented. For a host of reasons, the Yellowstone fires were unique, due largely to their grand scale and…
Year: 1990
Type: Document
Source: TTRS

Schmalzer, Hinkle, Mallander, Koller
[no description entered]
Year: 1990
Type: Document
Source: TTRS

Ball
[no description entered]
Year: 1990
Type: Document
Source: TTRS

Robinne, Bladon, Miller, Parisien, Mathieu, Flannigan
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities…
Year: 2018
Type: Document
Source: FRAMES

Baker
Prescribed burns usually have minimal hydrologic impact on watersheds because the surface vegetation, litter, and forest floor is only partially burned. Wildfire can, however, have a pronounced effect on basic hydrologic processes, leading to the increased sensitivity of the…
Year: 1990
Type: Document
Source: TTRS

Levine, Cofer, Sebacher, Rhinehart, Winstead, Sebacher, Hinkle, Schmalzer, Koller
[no description entered]
Year: 1990
Type: Document
Source: TTRS