Skip to main content

The Alaska Reference Database originated as the standalone Alaska Fire Effects Reference Database, a ProCite reference database maintained by former BLM-Alaska Fire Service Fire Ecologist Randi Jandt. It was expanded under a Joint Fire Science Program grant for the FIREHouse project (The Northwest and Alaska Fire Research Clearinghouse). It is now maintained by the Alaska Fire Science Consortium and FRAMES, and is hosted through the FRAMES Resource Catalog. The database provides a listing of fire research publications relevant to Alaska and a venue for sharing unpublished agency reports and works in progress that are not normally found in the published literature.

Displaying 1 - 25 of 28

Webb, Loranty, Lichstein
The Arctic is warming twice as fast as the global average, due in part to the albedo feedbacks of a diminishing cryosphere. As snow cover extent decreases, the underlying land is exposed, which has lower albedo and therefore absorbs more radiation, warming the surface and…
Year: 2021
Type: Document
Source: FRAMES

Hrobak, Barnes
National Park Service Resource Brief for the Arctic Inventory and Monitory Network which briefly summarizes the status of fire extent and frequency in ARCN parks and highlights the historic fire record (WFMI) & perimeter improvements.  The brief is written for a non-…
Year: 2021
Type: Document
Source: FRAMES

Guiterman, Lynch, Axelson
We present a new R package to provide dendroecologists with tools to infer, quantify, analyze, and visualize growth suppression events in tree rings. dfoliatR is based on the OUTBREAK program and builds on existing resources in the R computing environment and the well-used dplR…
Year: 2020
Type: Document
Source: FRAMES

The challenges of the 2020 Fire Year have validated the Cohesive Strategy and proven its foundational value for additional success and achievement across boundaries and landscapes in the West. The following pages offer a snapshot of 2020 activities and successes in the Western…
Year: 2021
Type: Document
Source: FRAMES

This edited volume presents original scientific research and knowledge synthesis covering the past, present, and potential future fire ecology of major US forest types, with implications for forest management in a changing climate. The editors and authors highlight broad…
Year: 2021
Type: Document
Source: FRAMES

McWethy
This seminar is part of Pennsylvania State University's Earth and Environmental Systems Institute's Fall 2021 EarthTalks Series: Fire in the Earth System(link is external). Fires burn in all terrestrial ecosystems on the globe, and wildfires are getting larger, more destructive…
Year: 2021
Type: Media
Source: FRAMES

Thompson
This seminar is part of Pennsylvania State University's Earth and Environmental Systems Institute's Fall 2021 EarthTalks Series: Fire in the Earth System(link is external). Fires burn in all terrestrial ecosystems on the globe, and wildfires are getting larger, more destructive…
Year: 2021
Type: Media
Source: FRAMES

This 15-minute video provides an overview of the FireWorks program and describes several of the activities.
Year: 2021
Type: Media
Source: FRAMES

Grabinski
An intensified pattern of wildfire is emerging in Alaska as rapidly increasing temperatures and longer growing seasons alter the state's environment. Both tundra and Boreal forest regions are seeing larger and more frequent fires. The impacts of these fires are felt across the…
Year: 2021
Type: Media
Source: FRAMES

This report assesses recent forest disturbance in the Western United States and discusses implications for sustainability. Individual chapters focus on fire, drought, insects, disease, invasive plants, and socioeconomic impacts. Disturbance data came from a variety of sources,…
Year: 2021
Type: Document
Source: FRAMES

Bowman, Kolden, Abatzoglou, Johnston, Van der Werf, Flannigan
Vegetation fires are an essential component of the Earth system but can also cause substantial economic losses, severe air pollution, human mortality and environmental damage. Contemporary fire regimes are increasingly impacted by human activities and climate change, but, owing…
Year: 2020
Type: Document
Source: FRAMES

Lu, Ikejiri, Lu
The Devonian is known for the earliest dispersal of extensive wildfires, but the spatiotemporal diversification pattern and process have not been studied in detail. We synthesize a total of 65 global wildfire occurrences based on fossil charcoals and geochemical (biomarker)…
Year: 2021
Type: Document
Source: FRAMES

Pyne
Dr. Stephen Pyne, the world's foremost fire historian, discusses how we are living in a Fire Age of comparable scale to the Ice Ages of the Pleistocene, and whether our relationship with fire is a mutual assistance pact or a Faustian bargain. To read his responses to the…
Year: 2020
Type: Media
Source: FRAMES

Pyne
Fire offers a special perspective by which to understand the Earth being remade by humans. Fire is integrative, so intrinsically interdisciplinary. Fire use is unique to humans, so a tracer of humanity's ecological impacts. Anthropogenic fire history shows the long influence of…
Year: 2020
Type: Document
Source: FRAMES

Healey, Yang, Cohen
he Landscape Change Monitoring System (LCMS) is a remote sensing-based system for mapping and monitoring landscape change across the United States. LCMS produces annual maps depicting change (vegetation loss and vegetation gain), land cover, and land use from 1985 to present…
Year: 2020
Type: Tool
Source: FRAMES

Maezumi, Gosling, Kirschner, Chevalier, Cornelissen, Heinecke, McMichael
Charcoal identification and the quantification of its abundance in sedimentary archives is commonly used to reconstruct fire frequency and the amounts of biomass burning. There are, however, limited metrics to measure past fire temperature and fuel type (i.e. the types of plants…
Year: 2021
Type: Document
Source: FRAMES

Jandt, Miller, Jones
Data on fire effects and vegetation recovery are important for assessing the impacts of increasing temperatures and lightning on tundra fire regimes and the implications of increased fire in the Arctic for wildlife and ecosystem processes. This report summarizes information…
Year: 2021
Type: Document
Source: FRAMES

Hollingsworth, Breen, Hewitt, Mack
Over the last century in the circumpolar north, notable terrestrial ecosystem changes include shrub expansion and an intensifying wildfire regime. Shrub invasion into tundra may be further accelerated by wildfire disturbance, which creates opportunities for establishment where…
Year: 2021
Type: Document
Source: FRAMES

Rogers, Balch, Goetz, Lehmann, Turetsky
Fire is a complex Earth system phenomenon that fundamentally affects vegetation distributions, biogeochemical cycling, climate, and human society across most of Earth's land surface. Fire regimes are currently changing due to multiple interacting global change drivers, most…
Year: 2020
Type: Document
Source: FRAMES

Frost, Loehman, Saperstein, Macander, Nelson, Paradis, Natali
Alaska's Yukon-Kuskokwim Delta (YKD) is one of the warmest parts of the Arctic tundra biome and tundra fires are common in its upland areas. Here, we combine field measurements, Landsat observations, and quantitative cover maps for tundra plant functional types (PFTs) to…
Year: 2020
Type: Document
Source: FRAMES

Vachula, Sae-Lim, Russell
Extensive burning of Arctic tundra landscapes in recent years has contradicted the conventional view that fire is a rare, spatially limited disturbance in tundra. These fires have been identified as harbingers of climate change, despite our limited understanding of Arctic fire…
Year: 2020
Type: Document
Source: FRAMES

Pyne
Humanity’s fire practices are creating the fire equivalent of an ice age. Our shift from burning living landscapes to burning lithic ones is affecting all aspects of Earth.
Year: 2020
Type: Media
Source: FRAMES

Flanagan
This webinar will review recent research led by Duke University investigating the impacts of fire on peatland ecosystems. Severe wildfires can cause smoldering ground fires that oxidize entire carbon stores and threaten peatlands around the globe. However, low‐severity surface…
Year: 2020
Type: Media
Source: FRAMES

Karp, Holman, Hopper, Grice, Freeman
Polycyclic aromatic hydrocarbons (PAHs), produced via incomplete combustion of organics, convey signatures of vegetation burned in the geologic past. New and published burn experiments reveal how the quantity, distributions, and isotopic abundances of fire-derived PAHs were…
Year: 2020
Type: Document
Source: FRAMES

Jandt, Thoman
This AFSC research brief takes a look at early Alaska fire history from the 1940s. The "Zombie" Fires of 1942 is a historical narrative of an exceptional fire event related to the Alaska Railroad, including an early description of a holdover fire burning over winter. 
Year: 2020
Type: Document
Source: FRAMES