Skip to main content

The Southwest Fire Science Consortium is partnering with FRAMES to help fire managers access important fire science information related to the Southwest's top ten fire management issues.


Displaying 1 - 10 of 120

James, Ansaf, Al Samahi, Parker, Cutler, Gachette, Ansaf
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for…
Year: 2023
Type: Document

Crowley, Stockdale, Johnston, Wulder, Liu, McCarty, Rieb, Cardille, White
Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for…
Year: 2023
Type: Document

Cheng, Luo, Yang, Li, Luo, Jia, Huang
Changes in soil carbon (C) pools driven by fire in forest ecosystems remain equivocal, especially at a global scale. In this study we analyzed data from 232 studies consisting of 1702 observations to investigate whether ecosystem type, climate zone…
Year: 2023
Type: Document

Santín, Moustakas, Doerr
Interactions between humans and wildfires have increased in many regions over the last decades driven by climate and land-use changes. A shift towards more adaptive fire management and policies is urgently needed but remains difficult to achieve.…
Year: 2023
Type: Document

Nolan, Anderson, Poulter, Varner
Aim: Each year, wild and managed fires burn roughly 4 million km2 [~400 million hectares (Mha)] of savanna, forest, grassland and agricultural ecosystems. Land use and climate change have altered fire regimes throughout the world, with a trend…
Year: 2022
Type: Document

Egorova, Pagnini
Several cross-sectional studies recognize that conductive climatic conditions, including grave weather conditions favorable for ignition, larger burned areas, increasing fuel load and longer fire season, can lead to extreme events and enable fires…
Year: 2022
Type: Document

Jones, Vraga, Hessburg, Hurteau, Allen, Keane, Spies, North, Collins, Finney, Lydersen, Westerling
Recent intense fire seasons in Australia, Borneo, South America, Africa, Siberia, and western North America have displaced large numbers of people, burned tens of millions of hectares, and generated societal urgency to address the wildfire problem (…
Year: 2022
Type: Document

Saito, Shiraishi, Hirata, Niwa, Saito, Steinbacher, Worthy, Matsunaga
Emissions from biomass burning (BB) are a key source of atmospheric tracer gases that affect the atmospheric carbon cycle. We developed four sets of global BB emissions estimates (named GlcGlob, GlcGeoc, McdGlob, and McdGeoc) using a bottom-up…
Year: 2022
Type: Document

Justino, Bromwich, Schumacher, Silva, Wang
Based on statistical analyses and Arctic Oscillation (AO) and the Pacific-North American pattern (PNA) induced climate anomalies in the 2001–2020 interval, it has been found that these climate modes drastically influence the fire danger (PFIv2) in…
Year: 2022
Type: Document

Harvey, Enright
Extreme fire seasons in both hemispheres in 2019 and 2020 have highlighted the strong link between climate warming and altered fire regimes. While shifts in fire regimes alone can drive profound changes in plant populations, communities, and…
Year: 2022
Type: Document