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[1] Linkages between permafrost distribution and lake
surface-area changes in cold regions have not been
previously examined over a large scale because of the
paucity of subsurface permafrost information. Here, a first
large-scale examination of these linkages is made over a
5150 km” area of Yukon Flats, Alaska, USA, by evaluating
the relationship between lake surface-area changes during
19792009, derived from Landsat satellite data, and
sublacustrine groundwater flow-path connectivity inferred
from a pioneering, airborne geophysical survey of permafrost.
The results suggest that the shallow (few tens of meters) thaw
state of permafrost has more influence than deeper permafrost
conditions on the evolving water budgets of lakes on a
multidecadal time scale. In the region studied, these key
shallow aquifers have high hydraulic conductivity and great
spatial variability in thaw state, making groundwater flow and
associated lake level evolution particularly sensitive to
climate change owing to the close proximity of these aquifers
to the atmosphere. Citation: Jepsen, S. M., C. 1. Voss, M. A.
Walvoord, B. J. Minsley, and J. Rover (2013), Linkages between lake
shrinkage/expansion and sublacustrine permafrost distribution
determined from remote sensing of interior Alaska, USA, Geophys.
Res. Lett., 40, doi:10.1002/grl.50187.

1. Introduction

[2] Lakes are important hydrological components of cold
regions that influence carbon cycling and climate [Subin
et al., 2012; Abnizova et al., 2012; Tranvik et al., 2009],
groundwater/surface-water exchange [Walvoord et al.,
2012; Nakanishi and Dorava, 1994], and habitats for
wildlife, migratory arctic shorebirds, and waterfowl [Prowse
and Brown, 2010]. Lakes of cold regions have undergone
marked fluctuations in number and surface area since at least
the 1950s [Rover et al., 2012; Carroll et al., 2011; Yoshikawa
and Hinzman, 2003], possibly because of changes in
permafrost and/or climate [Huang et al., 2011; Labrecque
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et al., 2009; Plug et al., 2008; Smith et al., 2005]. Potential
permafrost-related drivers of lake change include deepening
of the permafrost table [Marsh et al., 2009; Zhang et al.,
2008; Osterkamp, 2007], degradation of ice-wedge systems
[Jorgenson et al., 2006; Marsh and Neumann, 2001; Brewer
et al., 1993; Mackay, 1992], and thawing of sublacustrine
permafrost, which facilitates exchanges between lakewater
and groundwater (i.e., taliks) [Walvoord et al., 2012;
Rowland et al., 2011; van Everdingen, 1990].

[3] Taliks form below lakes that do not freeze completely to
their bottoms during winter [ Williams and Smith, 1989]. These
taliks may develop into open taliks, extending completely
through permafrost [van Everdingen, 1990], given sufficient
lake size, lake age, and suitable thermal conditions
[Wellman et al., 2013; Rowland et al., 2011]. Under current
climate conditions in interior Alaska, an open talik through
90 m of permafrost may develop in anywhere from ~200 to
>1000 years, depending on lake size, sediment characteristics,
and groundwater flow [Wellman et al., 2013]. A few studies
have reported substantial groundwater fluxes through open
taliks to and from lakes [Kane and Slaughter, 1973, and
Yoshikawa and Hinzman, 2003, respectively].

[4] Work presented here constitutes an unprecedented
assessment of the importance of sublacustrine taliks on lake
volume changes over a larger scale and broader spectrum of
hydrogeologic conditions than was previously possible. The
availability of collocated, remotely sensed observations of
shrinking and expanding lakes [Rover et al., 2012] and
sublacustrine permafrost distribution mapped from an airborne
electromagnetic (AEM) survey [Minsley et al., 2012; Ball
et al., 2011] in the Yukon Flats basin of interior Alaska
presents an opportunity to examine the association between
lake volume evolution and permafrost over a large area. The
AEM survey allows for the characterization of permafrost
and sublacustrine taliks as an indication of lake connectivity
to shallow and deep (subpermafrost) groundwater systems.
The objective of this study is to examine the statistical associ-
ation between sublacustrine taliks (N = 153) in the Yukon
Flats of interior Alaska, and surface area trends of lakes
(1979-2009) mapped from Landsat satellite data. This
examination allows for the identification of sublacustrine thaw
states most common to lakes undergoing changes in surface
area, and offers insights into the etent of connectivity between
lakewater and groundwater. A close association between the
occurrence of sublacustrine open taliks and lake surface-area
changes would support the hypothesis that changes in
lakewater/deep-groundwater exchange through open taliks
play an important role in lake size dynamics. Such a relation-
ship is envisioned to potentially result from the formation of
new open taliks or regional changes in groundwater flow
through existing open taliks. In contrast, a weak association
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between sublacustrine open taliks and surface-area changes,
coupled with a strong association between shallow thaw states
(i.e., states exclusive of open taliks) and surface-area changes,
would support the hypothesis that changes in lakewater/
shallow-groundwater exchange play a more important role in
lake size dynamics than changes in deep groundwater
exchange through open taliks.

2. Study Area

[s] The 5150 km? study area is located in the Yukon Flats,
a broad lowland in the Yukon River Basin of interior Alaska,
USA, approximately 200 km northeast of Fairbanks
(Figure 1a). The study area is low in topographic relief, with
elevations (relative to sea level) decreasing westward from
~145 to ~100 m (Gesch, 2007). It encompasses ~8500 lakes
covering ~10% of the land surface. The basin underlying the
study area contains up to ~3 km of mid-Tertiary to early-
Quaternary clay, silt and sand, and surficial deposits (up to
50 m thick) of primarily fluvial gravel [Clark et al., 2009;
Williams, 1962]. The study area overlies the regional
transition between discontinuous and continuous permafrost
[Jorgenson et al., 2008]. Maximum permafrost thickness is
approximately 100 m [Minsley et al., 2012; Williams,
1962], and the permafrost-table depth is highly variable
(e.g., 0.4—2.5 m near Twelvemile Lake; Figure 1c) [Jepsen
et al., 2013]. Permafrost is generally present except in areas

(a) Study area

Alaska, USA

around and below water bodies [Nakanishi and Dorava,
1994]. Closed spruce-hardwood forests occur along rivers
and creeks, and open, low-growing spruce forests occur
elsewhere [Viereck and Little, 2007]. Climate is continental
boreal, with a mean annual air temperature of approximately
—6°C, extreme seasonality in mean monthly air temperature
(~45°C), and mean annual precipitation of approximately
170 mm [Nakanishi and Dorava, 1994].

[6] Shrinking lakes are most prevalent in the southern
study area, while most expanding lakes are found north of
the Yukon River and near its tributaries (Figure b, c).
On the basis of this observation, the study area is divided
into the following four physiographic units, using creek
geomorphology [USGS, 2011] and mapped surface geology
[Williams, 1962] to guide the placement of boundaries:
Loess Base, South Flats, Rivers and Creeks, and North Flats
(Figure 1c). South Flats contains the smallest lakes, many
occupying partially drained lake basins (Figure 2) referred
to as “thaw sinks” by Jorgenson and Osterkamp [2005].

3. Methods

[7] Lake taliks (totaling 153) are characterized from
electrical resistivity cross sections along 392 flight-line km
of the AEM survey (Figure 1c). A ~100 m wide swath of
ground (i.e., the approximate system footprint in Ball et al.
[2011]) is sampled along each flight line. Interpretation of
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Figure 2. RGB composites (bands 5-4-3) from Landsat 5 showing lakes in the (a, b) South Flats, and (c, d) Loess Base
[USGS, 2011]. Spatial extents of the images are delineated in Figure 1a.

the resistivity cross sections follows that of Minsley et al.
[2012]. The resistivity of geologic materials varies with both
rock/soil type and thaw state (i.e., frozen versus unfrozen)
[Palacky, 1987; Hoekstra et al., 1975], potentially resulting
in an overlap in resistivity between different materials
having contrasting thaw states [Minsley et al., 2012]. To
reduce this ambiguity, we incorporate knowledge about
the known depositional history of the Yukon Flats [Clark
et al., 2009; Williams, 1962] to develop a lithologic model
and place constraints on the spatial distribution of different
materials. The lithologic model consists of two layers: an
upper layer of fluvial gravel (~15-50 m thick) and an
underlying layer of lacustrine silt. The observed resistivity
transition occurring at the interface between frozen gravel
and frozen silt, and between frozen silt and unfrozen silt,
in a deep borehole in Fort Yukon [Clark et al., 2009]
(transitions illustrated along line L-L’ of Figure 3a) are used
to constrain our model relating thaw state to resistivity for
each lithology (Figure 3, bottom). The interface between
fluvial gravel and underlying lacustrine silt, given their
depositional environment, is expected to be horizontal at
the scale of individual lakes. Therefore, at a given depth, it
is reasonable to assume that lateral resistivity transitions
across lake basins are related to changes in thaw state, rather
than material type. Shallow groundtruth data and a discussion
about possible thaw state interpretation errors are provided as
auxiliary material.

[8] Sublacustrine silt is considered to be unfrozen if
the vertical distance between the gravel-silt contact and
interpreted bottom of permaftost, #; is less than a threshold
value, set to 10 m to account for the uncertainty in interface
positions (Figure 3). One of four possible combinations of

thaw states for sublacustrine gravel and silt (Type A—D cases,
Figure 3) are assigned to each lake. Type A cases are assumed
to represent open taliks, and Type D cases are assumed to
represent closed taliks with a phase boundary occurring near
the gravel-silt contact. In Type B and C cases, the gravel is
assumed to be completely or partially frozen.

[v] Determination of shrinking, stable, and expanding lakes
is based on the regression analysis by Rover et al. [2012] using
Landsat satellite data [USGS, 2011]. This analysis uses a
supervised decision tree classification approach (average
model accuracy 98.9%) to map lake surface areas from
Landsat radiance data. Linear regression is used to determine
if lake surface areas have decreasing trends (“shrinking”
lakes), no trends (“stable” lakes), or increasing trends
(“expanding” lakes) at the 95% level of statistical significance
(p < 0.05) for the period of 1979-2009. These surface area
trends are calculated from available cloud-free observations
during May—September (17—20 observations per lake).
Existence of a statistical association between lake surface-area
trend and sublacustrine thaw state is determined using
contingency tables with chi-square tests of independence
(provided as auxiliary material). Lake surface-area trend is
considered to be “significantly associated” with sublacustrine
thaw state if the null hypothesis, postulating that area trend
and thaw state are independent, is rejected at the 95% level
of significance (p < 0.05).

4. Results and Discussion

[10] The occurrence of open taliks (Type A) is not
significantly associated with lake surface-area trend (p = 0.37),
as illustrated by the similar percentages of surface area trends
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Figure 3. Examples of the four different gravel-silt thaw states (Types A—D) interpreted from electrical resistivity cross
sections of the airborne electromagnetic survey [Minsley et al., 2012]. The vertical distance between the gravel-silt contact
and the interpreted bottom of permafrost, #; is used to determine whether silt is unfrozen (#, < 10 m) or frozen (¢,> 10 m).

for Type A cases and all lakes (Figure 4a). This suggests that
the formation of open taliks is not a primary mechanism of
the observed lake surface-area dynamics in the Yukon Flats.
The lack of association between open taliks and lake surface-
area trends also reduces the likelihood that changes in
regional groundwater flow, which influence lakewater/deep-
groundwater exchange through sublacustrine open taliks
[Walvoord et al., 2012], account for the observed lake dynamics.

[11] In contrast to open taliks, the occurrence of unfrozen
sublacustrine gravel is significantly associated with lake
surface-area trend (p = 0.04). For example, lakes overlying
unfrozen gravel are 2.5 times as likely to be shrinking as
lakes not overlying unfrozen gravel (Figure 4b). Lakes
overlying unfrozen gravel and frozen silt (Type D cases),
most prevalent in the Loess Base (Figure 4c), are particularly
susceptible to shrinkage (Figure 4a). These observations
suggest that changes in lakewater/groundwater exchange as
a potential driver of lake volume evolution result more likely
from shallow (few tens of meters), rather than deeper
(~50—100 m), thermal changes in permafrost. Shallow ther-
mal changes influencing lakewater/groundwater exchange
would likely need to occur in terrestrial areas of watersheds in
order to provide lateral groundwater flow-path connectivity to
and from sublacustrine aquifers, possibly including deepening

of the permafrost table [Marsh et al., 2009; Osterkamp, 2007]
and growth of supra- and intra-permafrost taliks [Zhang
et al., 2008]. Such processes could allow substantial ground-
water exchange between watersheds in the study area owing
to the high hydraulic conductivity of unfrozen gravel [Jepsen
et al., 2013]. In addition, the occurrence of unfrozen gravel is
more spatially variable across the landscape than deeper silt,
as indicated by the greater standard deviation of unfrozen
gravel than deeper unfrozen silt across physiographic units
(19% in Figure 4d versus 13% in Figure 4e).

[12] The occurrence of frozen sublacustrine silt is signifi-
cantly associated with lakes that are expanding (p = 0.05).
Lakes overlying frozen silt are 2.7 times as likely to be
expanding as lakes overlying unfrozen silt (Figure 4f). Given
the low hydraulic conductivity of frozen silt, upwelling of
deep groundwater is not likely to be a significant source of
recharge to many of these expanding lakes. Rather, enhanced
water supply to these lakes may follow shallow flow paths
through unfrozen gravel, or overland flow paths from adjacent
water bodies [Woo and Mielko, 2007]. The presence of frozen
silt below many of the expanding lakes may be an indication
regarding their age and/or persistence of being filled with
water—many of them may be too young to have formed open
taliks, or may undergo cycles of filling and drainage thereby
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Figure 4. Relationships between (a, b, and f) lake surface-area trends and sublacustrine thaw states and (c—e) sublacustrine
thaw states and location. Thaw states in Figure 4a and c are defined in Figure 3. Numbers in bars of Figure 4a, b, and f are the
number of lakes sampled by the airborne electromagnetic (AEM) survey. In bars of the remaining panels, the upper and
lower numbers are the percentages of total lake surface area from Rover et al. [2012] and the number of lakes sampled

by the AEM survey, respectively.

allowing their lake bottoms to freeze intermittently. The
observed high occurrence of expanding lakes along rivers
and creeks (Figure 1b), coupled with the possibility that many
of these lakes are young, could be an indication of recent
increases in regional groundwater discharge through taliks in
low-lying river corridors [Walvoord et al., 2012].

[13] These regional scale results are consistent with previ-
ous studies indicating the substantial impact of shallow perma-
frost thaw on lakewater-groundwater exchange and hence lake
water budgets [Marsh et al., 2009; Jorgenson and Osterkamp,
2005; Yoshikawa and Hinzman, 2003; Marsh and Neumann,
2001; Brewer et al., 1993; Mackay, 1992]. Reported thaw
depths in these studies have been up to a few tens of meters,
generally becoming shallower northward where permafrost
becomes colder and more continuous. The use of airborne
electromagnetics in this study has allowed a deeper and
larger-scale inspection of linkages between groundwater
flow-path connectivity and changes in lake water budgets than
was available in previous ground-based studies.

5. Conclusions

[14] Dynamics of lake water budgets in permafrost
regions, which control lake abundance and volume, depend
in part on sublacustrine connectivity of lakes with shallow
and deep groundwater via taliks. Results of a pioneering,
airborne electromagnetic survey over Yukon Flats, interior
Alaska, offer an unprecedented means of evaluating

relationships between lake surface-area changes, proxies of
water budget and lake volume changes, and thaw states of
sublacustrine ground in a permafrost region. Lack of a
significant association between the occurrence of open taliks
and lake surface-area changes (p = 0.37) suggests that lake
shrinkage and expansion is not occurring as a result of
sublacustrine thaw zones breaching the bottom of permafrost,
thereby linking lakewater and subpermafrost groundwater.
This lack of association also suggests that regional scale
changes in groundwater flow and associated lacustrine
interactions through open taliks are unlikely to account for
the observed lake size dynamics at the multidecadal time scale
considered (1979—2009). These results do suggest that if
increased groundwater exchange is driving the observed lake
shrinkage and expansion, the process likely involves shallow
thermal changes in permafrost (upper few tens of meters),
such as deepening of the permafrost table and growth of
supra- and intra-permafrost taliks. In the region studied, these
key shallow aquifers exhibit the highest hydraulic conductivity
and greatest spatial variability in unfrozen state. The thermal
and hydrological properties of these aquifers will be particularly
sensitive to climate change owing to their close proximity to the
atmosphere.
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