Arctic Urban Risks and Adaptations (AURA): a co-production framework for addressing multiple changing environmental hazards

PI: Jennifer Schmidt, University of Alaska Anchorage
https://www.respondtorisk.com

Wildfire

Rain-in-winter events

Permafrost thaw

Alaska Fire Science Consortium Meeting
Spring 2020
Team

Robert (Zeke) Ziel
Jen Schmidt

Dmitry Nicolsky
Louise Farquharson
Zena Robert

Jim Powell

Tony Berman
Toby Schwoerer
Brett Jordon
Kevin Berry

Economists

Sustainable Earth
(Birgit Hagedorn)

Monika Calef and Anna Varvak

Peter Bieniek
Rick Thoman

Partners
Communities
Cold Climate Research Center
Scenarios Network for Alaska and Arctic Planning
Study Areas

4-year project
Goals

- To better understand how thawing permafrost, wildfire, and rain-in-winter hazards are changing
- Understand and assess the risks and costs associated with the hazards
- Develop and evaluate measures that could enhance the capacity of local residents and governments to respond effectively as climate continues to change
- Work together to identify other areas of overlap to facilitate synergistic activities between academia and communities
The process

Objective 1 Assess hazards
- Community engagement
- Interviews with stakeholders
- Property owner surveys
- Citizen science
- Workshops

Objective 2 Assess costs, risks, and actions
- Literature review
- Product: Hazard maps

Objective 3 Develop an integrated multiple risk model
- Product: Estimated costs and risk, list of actions

Objective 4 Develop an adaptive policy framework
- Product: Integrated risk model

Product: Participatory Scenarios & Adaptive Policy Framework

Year 1
- Objective 1 Assess hazards
- Community engagement

Year 1 and 2
- Objective 2 Assess costs, risks, and actions
- Literature review

All years
- Interviews with stakeholders
- Property owner surveys
- Citizen science
- Workshops

Year 3
- Objective 3 Develop an integrated multiple risk model
- Community engagement
Objectives: focus on wildfire

• **Objective 1**: Create decadal wildfire hazard maps (1980-2060)

• **Objective 2**: Assessing public and private costs, risks, and actions associated with wildfire and wildfire management

• **Objective 3**: Integrated multiple hazard assessment that illustrates overlap between risks from wildfire, permafrost thaw, and rain-in-winter

• **Objective 4**: Develop an adaptive policy framework to help residents, local government, and agencies to manage wildfire and wildfire risks
Alaska EPSCoR Research Focus

Boreal fire regimes

The **goal** of the Boreal Fires team is to increase community resilience to wildfire by improving evaluations of subseasonal-to-seasonal fire risk, models of fire spread, and *understanding of fire mitigation strategies and impacts of wildfire on ecosystem services.*
Integrative research

Wildfire

Society

Environment

Wildfire management

IFTDSS

FIREWISE USA™
Wildfire management: Fuels treatment database

• Goal: build a comprehensive fuels treatment geodatabase for Alaska that is available to wildfire suppression crews to aid their efforts

• Steps
 • Base layer is the division of forestry GIS layer
 • Combine with other sources
 • Maintain the relation to the original data
 • Use recent aerial imagery to visualize
Wildfire management: Fuels treatment database

Desired attributes:
Region
Type of treatment
Year of treatment
Visual footprint (yes/no)
Year of aerial imagery
Cost
Source of funding

Currently 1,237 fuel treatment polygons
Assessing wildfire hazards over time

- Main vegetation source:

 - https://doi.org/10.3334/ORNLDAAC/1691
Assessing wildfire hazards over time

https://daac.ornl.gov/ABOVE/guides/Annual_Landcover_ABoVE.html
How are things changing in Anchorage?

Photo Album
by Jennifer Schmidt
How are things changing in Fairbanks?
These are very small values (< 1%)!
Key points:
Size of the wedges = proportion on the land

So what is the largest type of “veg”?

Key points:
Inset = 1984
Outer = 2014

Key points:
Lines across the middle indicate a transition

Ex. Tall shrub to deciduous
These are larger values (> 1%)!
Fire is the key to vegetation changes
From this we can get transition rates to model forward

Percent Vegetation in Time Since Fire

Sparsely vegetated
Tall shrub
Key points:
Size of the wedges = proportion on the land

So what is the largest type of “veg”?

Key points:
Inset = 1984
Outer = 2014

Tall shrub increased
Key points:
Lines across the middle indicate a transition

How does the middle compare with Anchorage?

Key points:
Woodland transitions into many different types of veg

Key points:
Fire has changed increased deciduous
Targeting spruce for reduction in wildfire risk is certainly good, ABoVE is pretty good at picking up wildfire effects on vegetation, but not always.
Future

• Continue to build fuel treatment and work with the wildfire community to maximize its usefulness
• Alter the ABoVE data to break out the evergreen categories (i.e. black and white spruce, pine, etc.)
• Develop flammability crosswalks
• Use Flammmap and deterministic models to assess decadal wildfire hazards
• Gather information to model risk
Thank you and Questions

- Zeke Ziel
- NSF #1757348 Fire and Ice: Navigating Variability in Boreal Wildfire Regimes and Subarctic Coastal Ecosystems
- NSF #1927563 Collaborative Research: Arctic Urban Risks and Adaptations (AURA): a co-production framework for addressing multiple changing environmental hazards

https://www.respondtorisk.com/